

Our approach...

microwaves

Micromachined, highresolution, microwave diagnostic tool for skin cancer

medical diagnosis

micro-machining

KTH's micromachined mm-wave skin cancer probe

Töpfer, Dudorov, Oberhammer, IEEE IMS 2012.

Probe size and design

Subwavelength probe tip size: 0.2λ in skin tissue at 100GHz

Design & simulations

CST Microwave Studio, FDTD

Calibration with silicon of 'tailor-made' permittivity

Sub-wavelength perforated silicon:

- permittivity by design from 1.5 to 10
- losses by using doped substrate
- micromachined (DRIEtched)

Töpfer, Dudorov, Oberhammer, IEEE MEMS 2013.

Technical probe characterization

- high responsivity
- high reproducibility (<1.5%)
- high stability (<0.6%/6h)

Töpfer, Dudorov, Oberhammer, IEEE IMS 2012.

Probe resolution

- lateral resolution ~100um
- tested on tailor-made samples mimicking permittivity modulation corresponding to healthy and cancer tissue

Töpfer, Dudorov, Oberhammer, IEEE MEMS 2013.

Part 5. In-vivo studies

Measurement setup for on-skin measurements

X-y-z stage to move probe onto and over skin

Micromachined millimeter-wave probe, connected to VNA through standard waveguide

E8163A Agilent vector network analyzer (VNA) with millimeterwave extender heads, up to 110 GHz

Arm of test subject (here: my supervisor)

Measurements on different body sites

Different S₁₁ measured on different body sites for skin cancer diagnostics reference measurement on surrounding tissue required

Töpfer, Dudorov, Oberhammer, IEEE IMS 2014.

Skin burn measurements

• Clear differences in S_{11} measurements with our mm-wave probe between burned, newly grown and normal skin.

Töpfer, Dudorov, Oberhammer, IEEE IMS 2014.

Monitoring of skin healing process

- day 5: normal/new/burnt still distinguishable
- day 7: normal/new indistinguishable; burnt approaching normal

Discrimination benign skin neoplasms o from subdermal nevi

Profile scan over intradermal nevus

KTH microwave measurements:

 clear correlation with nevus

TEWL reference measurements

 not stable/reproducible low signal

Töpfer, Dudorov, Oberhammer, IEEE IMS 2014.

Standardized dermatological tests

- artificially stimulated skin irritation with chemicals, similar to allergy tests
- patches with different concentration levels (0%, 1%, 2%, 5%, 10%) applied for 24 hours
- monitored every day
- references:
 - examination by dermatologist
 - trans-epidermal water-loss instrument

Töpfer, IEEE IMS 2014.

Monitoring of irritant skin reactions

skin irritation with sodium-lauryl-sulphate (24 hours, 10%, 5%, 2%, 1%, 0%)

Microwave measurements with KTH probe:

Reference measurements: TEWL dermatological instrument (Khazaka TM300)

Probe pressure operator independency

 stable signal after skin displacement of ~0.1mm

It works - what's next?

Studies on real melanoma.

Murine skin cancer model

12-14 days

Injection of B16F10 cells

Malignant melanoma tumor

- 6-weeks-old female athymic Nude-Foxn1^{nu} mice
- Subcutaneous injection of 0.5 million 10^6 B16F10 murine melanoma cells in 200 μ l PBS
- Palpable tumor of ~1 cm size after 12 − 14 days → termination

Measurement setup

Mouse anesthetized during measurement

Heating mat and temperature sensor for stable mouse body temperature

Millimeter-wave probe

VNA

x-y-z stage to move probe

Tumor inside skin

represents realistic skin tumor

Results: Histology

- > Tumor beneath skin and fat
 - not representing skin cancer

Slide 41

Murine skin cancer model

Mouse 1: Tumor inside skin (represents **realistic** skin tumor)

Mouse 2: Tumor beneath skin (**not** representing skin cancer)

Clear difference in S_{11} between the realistic tumor and the surrounding tissue (6.7 times the average stand. deviations on the same spot)

Acknowledgements

Ethical approvals by Regional Research Ethics Board Stockholm, fulfilling requirements according to the Swedish Ethical Review Act of 2003-06-03 (SFS no 2003:460):

- N80/15 (2014)
- N100/16 (2016)

Funding provided by VINNOVA – Swedish Governmental Agency for Innovation Systems

Conclusions

- microwave interaction with tissue exists and can be used for medical diagnosis
- millimeter and submillimeter-wave frequencies offer many opportunities in medical diagnosis
- a tailor-made, micromachined 100 GHz near-field probe for skin cancer diagnosis was designed and implemented
- successfully characterized was carried out technically and invivo, on human and animal models
- the senseor is clearly able to discriminate melanoma from healthy tissue at the targeted tissue depth