# RF & ELF Mobile Phone Exposure - Review and Newest Findings

Marie-Christine Gosselin Sven Kühn Mark Douglas Andreas Christ Niels Kuster





Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

# The Beginning

- early 80s
  - Motorola: developed first in-house SAR scanner
- late 80s
  - IT'IS/ETH & Motorola: published the absorption mechanism for the near-field of transmitters
- early 90s
  - lawsuit: no knowledge about the phone exposure (except Motorola)
  - German Agency for Radiation Protection: requested phone certification
- IT'IS/ETH: received a contract to develop a prototype of certification system & procedures by German Ministry of Telecom, D-Telecom, Mannesmann, Swiss-PTT



RF & ELF Mobile Phone Exposure

#### Science Brunch, Zurich, May 2012

#### The Beginning

- early 80s
  - Motorola: developed first in-house SAR scanner
- late 80s
  - IT'IS/ETH & Motorola: published the absorption mechanism in the near-field of transmitter



Science Brunch, Zurich, May 2012

### Today

RF & ELF Mobile Phone Exposure

- each phone is certified to be compliant with the RF safety guidelines
- the maximum exposure (spSAR) is provided in the user manual
- lower values lead to a lower maximum exposure in the real world
- technology to assess the average real-world exposure of CNS and other tissues is ready
- each phone is intrinsically compliant with the ELF restrictions
- main unresolved details:
  - technical issues regarding measurement of latest technologies
  - hand effects on SAR
  - measurement distance for on-body testing



### Radio-Frequency (RF) Fields from Mobile Phones



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

Science Brunch, Zurich, May 2012

# Dependence of Averaging Volume





# Basic Standard (>10 MHz)

|                         | ICNIRP         | FCC  | IEEE 2006 | India    |
|-------------------------|----------------|------|-----------|----------|
|                         | W/kg           | W/kg | W/kg      | W/kg     |
| whole-body<br>SAR limit | 0.08           | 0.08 | 0.08      | 0.08     |
| peak spatial            | 2              | 1.6  | 2         | 1        |
| SAR limit               | 10g contiguous |      | 10g cube  | 10g cube |

- whole-body limit: only relevant for vascular diseases
- spatial peak limit: relevant for local heating and potentially "athermal" effects



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### Problem





### Goal for Exposure Assessment (Compliance)

- · the measured quantity must be conservative
  - >90th percentile of exposed population, i.e., all age groups
- simplified but not greatly overestimated exposure
  - ▶ i.e., w/o inhibiting technological progress
- low exposure in real life = low exposure in the test and vice versa
  - favors low exposure devices
- field distribution is greatly non-homogeneous
  - ▶ large gradients in 3D, multiple maximum
- mobile specific
  - highest absorption close to the surface
    - ▶ measurements closest to the surface
  - complex modulations
    - very large peak-to-average ratios



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### 1. Interaction Mechanism

$$SAR = \frac{\sigma}{\rho} \frac{\mu \omega}{\rho \sqrt{\sigma^2 + \varepsilon^2 \omega^2}} (1 + c_{corr} \gamma_{pw})^2 H_{t_{inc}}^2$$
 (1)

in which  $\gamma_{\mathrm{pw}}$  is the plane-wave reflection coefficient for the  $H_t$  field

$$H^2 \sim i^2/d^2$$

$$\gamma_{\rm pw} = \frac{2\left|\sqrt{\varepsilon'}\right|}{\left|\sqrt{\varepsilon'} + \sqrt{\varepsilon_0}\right|} - 1 \tag{2}$$

- $\rightarrow$  SAR =  $RF_{losses} \sim j^2/d^2$
- exposure is not directly related to the radiated power!
- strongly design dependent

#### IT FOUNDATION

#### Research Effort of IT'IS/ETH

- establishment of absorption mechanism (Kuster et al., 92)
- development of **novel probes** (various publications)
- development of 1st dosimetric scanner DASY1/2 (Schmid et al., 96)
- dependence on inner anatomy (Hombach 96, Meier 96, Drossos 01, Christ 08)
- dependence on outer anatomy (Meier 96, Schoenborn 98, Christ 05, Kuehn 09)
- dependence on the **modeling of ear** on the psSAR (Burkhardt 00, Christ 09)
- enhancements due to **metallic implants** (Thesis Meier 96, Kyriakou, 11)
- development of **phantom and tissue materials** (MCL, SPEAG for IEEE1528)
- dependence on the **hand** on head exposure (Meier 95, Li, 11, Li 12)
- design rules for optimal OTA & minimal SAR (Tay et al., 98)
- calibration procedures (thesis Pokovic, 99, Kühn 09)
- uncertainty assessment procedures & budget (thesis Pokovic, 99)
- procedure for body-worn devices (Christ et al. 06, Kühn et al. 09)
  validation of SAM head (Beard et al. 05, Christ et al. 06)
- modulation dependent calibrations (Kühn et al. 11)
- majority of relevant references in the standard generated by IT'IS/ETH



Science Brunch, Zurich, May 2012

Science Brunch, Zurich, May 2012

RF & ELF Mobile Phone Exposure

#### 1. Consequences of Interaction Mechanism





11

12

#### Research Effort of IT'IS/ETH

- establishment of absorption mechanism (Kuster et al., 92)
- development of **novel probes** (various publications)
- development of 1st dosimetric scanner DASY1/2 (Schmid et al., 96)
- dependence on **inner anatomy** (Hombach 96, Meier 96, Drossos 01, Christ 08)
- dependence on **outer anatomy** (Meier 96, Schoenborn 98, Christ 05, Kuehn 09)
- dependence on the **modeling of ear** on the psSAR (Burkhardt 00, Christ 09)
- enhancements due to **metallic implants** (Thesis Meier 96, Kyriakou, 11)
- development of **phantom and tissue materials** (MCL, SPEAG for IEEE1528)
- dependence on the **hand** on head exposure (Meier 95, Li, 11, Li 12)
- design rules for optimal OTA & minimal SAR (Tay et al., 98)
- calibration procedures (thesis Pokovic, 99, Kühn 09)
- uncertainty assessment procedures & budget (thesis Pokovic, 99)
- procedure for **body-worn devices** (Christ et al. 06, Kühn et al. 09)
- validation of SAM head (Beard et al. 05, Christ et al. 06)
- modulation dependent calibrations (Kühn et al. 11)
- ▶ majority of relevant references in the standard generated by IT'IS/ETH



13

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

# Smallest Isotropic Probes





#### Historical Note



IT I FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

14

#### Research Effort of IT'IS/ETH

- establishment of **absorption mechanism** (Kuster et al., 92)
- development of **novel probes** (various publications)
- development of 1st dosimetric scanner DASY1/2 (Schmid et al., 96)
- dependence on **outer anatomy** (Meier 96, Schoenborn 98, Christ 05, Kuehn 09)
- dependence on **inner anatomy** (Hombach 96, Meier 96, Drossos 01, Christ 08)
- dependence on the **modeling of ear** on the psSAR (Burkhardt 00, Christ 09)
- enhancements due to **metallic implants** (Thesis Meier 96, Kyriakou, 11)
- development of **phantom and tissue materials** (MCL, SPEAG for IEEE1528)
- dependence on the **hand** on head exposure (Meier 95, Li, 11, Li 12)
- design rules for optimal OTA & minimal SAR (Tay et al., 98)
- **calibration procedures** (thesis Pokovic, 99, Kühn 09)
- uncertainty assessment procedures & budget (thesis Pokovic, 99)
- procedure for **body-worn devices** (Christ et al. 06, Kühn et al. 09)
- validation of SAM head (Beard et al. 05, Christ et al. 06)
- **modulation** dependent calibrations (Kühn et al. 11)
- ▶ majority of relevant references in the standard generated by IT'IS/ETH



# 2. Phantom Shape + 3. Liquid + 4. Hand

- phone parts close as possible
  - ▶ large head (90th percentile US army)
  - ▶ touch and tilt
- liquid representing worst-case tissue composition
  - liquid parameters derived from layered tissue model considering all tissue
- hand
  - ▶ testing w/o hands since studies in the late 90s showed only reduction
  - currently under reconsideration.





17

19

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

# Virtual Population



IT I FOUNDATION

# Hand Issue (Open)



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

18

#### Poser





21

#### **Anatomical Characteristics**



IT FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### Research Effort of IT'IS/ETH

- establishment of **absorption mechanism** (Kuster et al., 92)
- development of **novel probes** (various publications)
- development of 1st dosimetric scanner DASY1/2 (Schmid et al., 96)
- dependence on **outer anatomy** (Meier 96, Schoenborn 98, Christ 05, Kuehn 09)
- dependence on **inner anatomy** (Hombach 96, Meier 96, Drossos 01, Christ 08)
- dependence on the **modeling of ear** on the psSAR (Burkhardt 00, Christ 09)
- enhancements due to **metallic implants** (Thesis Meier 96, Kyriakou, 11)
- development of **phantom and tissue materials** (MCL, SPEAG for IEEE1528)
- dependence on the **hand** on head exposure (Meier 95, Li, 11, Li 12)
- design rules for optimal OTA & minimal SAR (Tay et al., 98)
- calibration procedures (thesis Pokovic, 99, Kühn 09)
- uncertainty assessment procedures & budget (thesis Pokovic, 99)
- procedure for **body-worn devices** (Christ et al. 06, Kühn et al. 09)
- validation of SAM head (Beard et al. 05, Christ et al. 06)
- **modulation** dependent calibrations (Kühn et al. 11)
- majority of relevant references in the standard generated by IT'IS/ETH



# Physics' Based Morphing



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### Implants - A Regulatory Gap



IT I FOUNDATION

23

#### Evaluation at Basic Restriction Limit

#### Normalized Temperature Increase - Frequency Wire Length: 500mm



IT I FOUNDATION

25

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

## Latest Scanning System (DASY5 NEO)





#### Research Effort of IT'IS/ETH

- establishment of absorption mechanism (Kuster et al., 92)
- development of **novel probes** (various publications)
- development of **1st dosimetric scanner DASY1/2** (Schmid et al., 96)
- dependence on **outer anatomy** (Meier 96, Schoenborn 98, Christ 05, Kuehn 09)
- dependence on inner anatomy (Hombach 96, Meier 96, Drossos 01, Christ 08)
- dependence on the **modeling of ear** on the psSAR (Burkhardt 00, Christ 09)
- enhancements due to **metallic implants** (Thesis Meier 96, Kyriakou, 11)
- development of **phantom and tissue materials** (MCL, SPEAG for IEEE1528)
- dependence on the **hand** on head exposure (Meier 95, Li, 11, Li 12)
- design rules for optimal OTA & minimal SAR (Tay et al., 98)
- calibration procedures (thesis Pokovic, 99, Kühn 09)
- uncertainty assessment procedures & budget (thesis Pokovic, 99)
- procedure for **body-worn devices** (Christ et al. 06, Kühn et al. 09)
- validation of SAM head (Beard et al. 05, Christ et al. 06)
- modulation dependent calibrations (Kühn et al. 11)
- ▶ majority of relevant references in the standard generated by IT'IS/ETH



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### Fast SAR Scanners







# Spatial Peak SAR Values (System)



IT FOUNDATION

29

31

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

# Brain Exposure as a Function of Anatomy



IT I FOUNDATION

# Spatial Peak SAR (t)



IT I FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

# Brain Exposure (Phone Design)



IT ! FOUNDATION

32

# Estimation of Avg Brain Exposure of Phone X





RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

33

# Mobile Phone Systems

|                    | Bands<br>(MHz)     | System                      | max P <sub>rms</sub> (mW) | avg P <sub>rms</sub><br>(mW) | maxpsSAR<br>(W/kg) | avg psSAR<br>(W/kg) | remarks                               |
|--------------------|--------------------|-----------------------------|---------------------------|------------------------------|--------------------|---------------------|---------------------------------------|
| NATEL/<br>NMT (1G) | 450/900            | FM/FFSK                     | 1000                      | ~500                         | 1 - 4              | 0.25 - 2            |                                       |
| GSM/<br>EDGE (2G)  | 900/1800           | TDMA,<br>FDMA /<br>GMSK     | 250/125                   | ~50-100                      | 0.1 - 2            | 0.03 - 0.8          |                                       |
| UMTS/<br>HSPA (3G) | 1950               | CDMA /<br>QPSK              | 125                       | ~1-5                         | 0.1 - 2            | 0.001 - 0.04        |                                       |
| LTE (3.9G)         | 2600?              | SC-FMDA /<br>QPSK,<br>16QAM | <200                      | n.a.                         | 0.1 - 2            | n.a                 | avg. P in<br>network still<br>unknown |
| WiFi               | 2450/<br>5200-5800 | CSMA-CA /<br>DxPSK,<br>xQAM | 100, 1000<br>(DFS, TPC)   | usage dep:<br><1%            | 0.05 - 1           | 0.0005 -<br>0.001   |                                       |
| Bluetooth          | 2450               | FHSS /<br>GFSK,<br>xDPSK    | 100/2.5/1                 | usage dep:<br><0.1%          | 0.001 - 0.5        | 0.00001 -<br>0.005  |                                       |

IT I FOUNDATION

# Various Brain Regions Exposure by Sources

• Normal mobile/cordless phone user



IT I FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### GSM: Time-Domain



IT ! FOUNDATION

35

37

# GSM Time Domain Signals



II FOUNDATION

RF & ELF Mobile Phone Exposure Science Brunch, Zurich, May 2012

### LTE: Time-Domain



IT I FOUNDATION

# UMTS Time Domain Signals



IT I FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### WiFi: Time-Domain



IT I FOUNDATION

41

43

### Communication Systems: Frequency Domain



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### Absorption Mechanism (ELF)

- coupling with LF magnetic fields
  - induced electric fields by eddy currents
- exposure limited to prevent:
  - nerve and muscle stimulation
  - retinal phosphenes

# IT FOUNDATION

# Low-Frequency (LF) Fields from Mobile Phones

FSM Project



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### ICNIRP Basic Restrictions (1998)

Table 4. Basic restrictions for time varying electric and magnetic fields for frequencies up to 10 GHz.<sup>a</sup>

| Exposure characteristics | Frequency range | Current density for<br>head and trunk<br>(mA m <sup>-2</sup> ) (rms) | Whole-body<br>average SAR<br>(W kg <sup>-1</sup> ) | Localized SAR<br>(head and trunk)<br>(W kg <sup>-1</sup> ) | Localized SAR (limbs) (W kg <sup>-1</sup> ) |
|--------------------------|-----------------|----------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|---------------------------------------------|
| Occupational             | up to 1 Hz      | 40                                                                   | _                                                  | _                                                          | _                                           |
| exposure                 | 1–4 Hz          | 40/f                                                                 | _                                                  | _                                                          | _                                           |
|                          | 4 Hz-1 kHz      | 10                                                                   | _                                                  | _                                                          | _                                           |
|                          | 1-100 kHz       | f/100                                                                | _                                                  | _                                                          | _                                           |
|                          | 100 kHz-10 MHz  | f/100                                                                | 0.4                                                | 10                                                         | 20                                          |
|                          | 10 MHz-10 GHz   | · —                                                                  | 0.4                                                | 10                                                         | 20                                          |
| General public           | up to 1 Hz      | 8                                                                    | _                                                  | _                                                          | _                                           |
| exposure                 | 1–4 Hz          | 8/f                                                                  | _                                                  | _                                                          | _                                           |
| -                        | 4 Hz-1 kHz      | 2                                                                    | _                                                  | _                                                          | _                                           |
|                          | 1-100 kHz       | f/500                                                                | _                                                  | _                                                          | _                                           |
|                          | 100 kHz-10 MHz  | f/500                                                                | 0.08                                               | 2                                                          | 4                                           |
|                          | 10 MHz-10 GHz   | · –                                                                  | 80.0                                               | 2                                                          | 4                                           |

$$\langle \mathbf{J}(\mathbf{r_0}) \rangle_A = \frac{1}{A} \int_A \mathbf{J}(\mathbf{r}) \cdot \hat{\mathbf{n}} \, da. \quad A= 1 \text{cm}^2$$



11

### ICNIRP Basic Restrictions (2010)

$$\langle \mathbf{E}(\mathbf{r_0}) \rangle_V = \frac{1}{V} \int_V \mathbf{E}(\mathbf{r}) \, dv$$

$$V = 2x2x2mm^3$$

**Table 2.** Basic restrictions for human exposure to time-varying electric and magnetic fields.

Science Brunch, Zurich, May 2012

| Exposure characteristic | Frequency range | Internal electric field<br>(V m <sup>-1</sup> ) |
|-------------------------|-----------------|-------------------------------------------------|
| Occupational exposure   |                 |                                                 |
| CNS tissue of the head  | 1-10 Hz         | 0.5/f                                           |
|                         | 10 Hz-25 Hz     | 0.05                                            |
|                         | 25 Hz-400 Hz    | $2 \times 10^{-3} f$                            |
|                         | 400 Hz-3 kHz    | 0.8                                             |
|                         | 3 kHz-10 MHz    | $2.7 \times 10^{-4} f$                          |
| All tissues of head and | 1 Hz-3 kHz      | 0.8                                             |
| body                    | 3 kHz-10 MHz    | $2.7 \times 10^{-4} f$                          |
| General public exposure |                 |                                                 |
| CNS tissue of the head  | 1-10 Hz         | 0.1/f                                           |
|                         | 10 Hz-25 Hz     | 0.01                                            |
|                         | 25 Hz-1000 Hz   | $4 \times 10^{-4} f$                            |
|                         | 1000 Hz-3 kHz   | 0.4                                             |
|                         | 3 kHz-10 MHz    | $1.35 \times 10^{-4} f$                         |
| All tissues of head and | 1 Hz-3 kHz      | 0.4                                             |
| body                    | 3 kHz-10 MHz    | $1.35 \times 10^{-4} f$                         |



45

47

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### LF Fields from Mobile Phones

- power of digital circuits
- power of PA including PCL
- audio signal

# IEEE Basic Restrictions (C95.6, 2002)

Table 1-Basic restrictions applying to various regions of the body<sup>a, b</sup>

| Exposed tissue                 | f <sub>e</sub> (Hz) | General public $E_{\theta}$ - rms (V/m) | Controlled environment $E_{\theta}$ - rms (V/m) |
|--------------------------------|---------------------|-----------------------------------------|-------------------------------------------------|
| Brain                          | 20                  | $5.89 \times 10^{-3}$                   | $1.77 \times 10^{-2}$                           |
| Heart                          | 167                 | 0.943                                   | 0.943                                           |
| Hands, wrists, feet and ankles | 3350                | 2.10                                    | 2.10                                            |
| Other tissue                   | 3350                | 0.701                                   | 2.10                                            |

Interpretation of table is as follows:  $E_i = E_0$  for  $f \le f_e$ ;  $E_i = E_0$  ( $f/f_e$ ) for  $f \ge f_e$ .

$$\langle \mathbf{E}(\mathbf{r_0}) \rangle_L = \frac{\hat{\mathbf{l_0}}}{L} \int_L \mathbf{E}(\mathbf{r}) \cdot \hat{\mathbf{l_0}} \, dl$$
 L= 5mm

IT I FOUNDATION

Science Brunch, Zurich, May 2012

### Measurement of Incident Fields

- 10 mobile phones
- GSM900, GSM1800, UMTS

RF & ELF Mobile Phone Exposure

- 3 PCLs
- front and back
- audio OFF/ON (1kHz)
- DASY52 NEO
- T-coil uniaxial probe
- time-domain via python implementation
- probe tip 1mm from phone surface (=4mm from sensor center)







IT FOUNDATION

bIn addition to the listed restrictions, exposure of the head and torso to magnetic fields below 10 Hz shall be restricted to a peak value of 167 mT for the general public, and 500 mT in the controlled environment.

49

51

#### Measurement of Incident Fields - 10 DUTs

| ID                | Phone Model                | Type                   | OS            | Release Date |
|-------------------|----------------------------|------------------------|---------------|--------------|
| Nokia6120         | Nokia 6120                 | bar                    |               | April 2007   |
| SonyEricssonW910  | Sony Ericsson W910i        | slide                  |               | Oct 2007     |
| SonyEricssonW760i | Sony Ericssion W760i       | slide                  |               | May 2008     |
| MotorolaV1050     | Motorola V1050             | flip                   |               | January 2005 |
| HTCdiam100        | HTC Diam100 Touch Diamond  | $\operatorname{smart}$ | Windows Phone | May 2008     |
| HTCtopa100        | HTC Topa100 Touch Diamond2 | $\operatorname{smart}$ | Windows Phone | April 2009   |
| iPhone3g          | Apple iPhone 3g            | $\operatorname{smart}$ | iOS           | July 2008    |
| iPhone4           | Apple iPhone 4             | $\operatorname{smart}$ | iOS           | June 2010    |
| SamsungGT-I9001   | Samsung Galaxy GT-I9001    | $\operatorname{smart}$ | Android       | June 2010    |
| LG                | LG P920 Optimus 3D         | $\operatorname{smart}$ | Android       | July 2011    |



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### Results - Frequency Spectrum



- GSM: 217Hz and harmonics (B depend on PCL, confirms origin of field)
- UMTS: no significant



#### Measurement of Incident Fields - 10 DUTs



IT FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

# Results - Spatial Distribution



IT FOUNDATION

52

### Results - Spatial Distribution



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

53

### Results - Spatial Distribution (max dB/dt)



IT FOUNDATION

### Results - Spatial Distribution



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

54

56

### Results - Spatial Distribution (max dB/dt)

| Phone                    | max ratio<br>GSM900 | to $dB/dt$ ICN GSM1800 | NIRP limits<br>UMTS |
|--------------------------|---------------------|------------------------|---------------------|
| HTCdiam100               | 4.49                | 3.13                   | 0.44                |
| HTCtopa100               | 4.50                | 2.08                   | 0.49                |
| iPhone3g                 | 1.28                | 1.12                   | 0.74                |
| iPhone4                  | 1.51                | 1.55                   | 1.25                |
| LG                       | 2.49                | 1.64                   | 0.68                |
| MotorolaV1050            | 0.12                | 0.11                   | -                   |
| Nokia6120                | 2.88                | 2.22                   | 0.49                |
| SamsungGT-I9001          | 2.32                | 1.72                   | 0.16                |
| SonyEricssonW760i        | 0.97                | 0.88                   | 0.55                |
| ${\bf SonyEricssonW910}$ | 2.64                | 1.52                   | 0.37                |



RF & ELF Mobile Phone Exposure Science Brunch, Zurich, May 2012

#### Induced Fields - Model of Equivalent Source



IT !! FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

57

59

### Induced Fields - Frequency Spectrum

• for each quantity Q, the maximum ratio to the limits (ICNIRP, IEEE) is extracted using the spectrum for specific phones:

 $R_Q^{max} = \max \left( \text{IFFT} \begin{cases} Q_{sim}(f_0) & \text{frequency spectrum} \\ Q_{lim}(f) & \text{follow} \end{cases} \\ \lim_{l \to \infty} \left( \text{IFFT} \left( \begin{array}{c} Q_{sim}(f_0) & B_{meas}(f) \\ \hline Q_{lim}(f) & B_{sim}^{max}(f_0) \end{array} \right) \right) \\ \lim_{l \to \infty} \left( \text{ICNIRP, IEEE} \right) & \max_{l \to \infty} \text{maximum field from simulation, in plane equivalent to measurements} \\ \end{array} \right)$ 

IT I FOUNDATION

RF & ELF Mobile Phone Exposure

#### Science Brunch, Zurich, May 2012

#### Induced Fields - Anatomical Models

- anatomical heads from the Virtual Family
  - adults: Duke (34yo male), Ella (26yo female)
  - children: Billie (11yo girl), Thelonious (6yo boy)



IT FOUNDATION

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### Induced Fields - Spatial Distribution



- plane through maximum



#### Induced Fields - J<sub>cns</sub> vs all tissues



Science Brunch, Zurich, May 2012

### Induced Fields - J<sub>cns</sub> GSM900 vs UMTS



IT FOUNDATION

RF & ELF Mobile Phone Exposure

#### Induced Fields - J<sub>cns</sub> GSM900 vs 1800



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### Induced Fields - Evol CNS vs all tissues, GSM900



63

### Induced Fields - Eline CNS vs all tissues, GSM900



IT FOUNDATION

65

67

RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

#### Conclusions

- each phone is certified to be compliant with the RF safety guidelines
- the maximum exposure (spSAR) is provided in the user manual
- lower values lead to a lower maximum exposure in the real world
- · technology to assess the average real-world exposure of CNS and other tissues is ready
- each phone is intrinsically compliant with the ELF restrictions
- main unresolved details:
  - technical issues regarding measurement of latest technologies
  - hand effects on SAR
  - measurement distance for on-body testing

#### IT IS FOUNDATION

#### Induced Fields - Evol vs Eline, GSM900



RF & ELF Mobile Phone Exposure

Science Brunch, Zurich, May 2012

### Acknowledgements

- all PhD students, Post-Docs, colleagues, partners and sponsors who contributed and funded the RF research projects related to exposure assessment of wireless devices during the last 20 years
- the FSM (Research Foundation Mobile Communication) for funding the ELF research project

