Mitglieder der Arbeitsgruppe
(in alphabetischer Reihenfolge)

Valentin Delb
Abteilungsleiter, AWEL Kanton Zürich, Delegierter der Konferenz der Vorsteher der Umweltschutzämter der Schweiz KVU

Gregor Dudle
Dr. ès sc., Stv. Direktor, Eidg. Institut für Metrologie (Stv. Dr. Marc-Olivier André)

Gregor Dürenberger
Dr. sc. nat., Geschäftsführer, Forschungsstiftung Strom und Mobilkommunikation FSM

Christian Grasser
Geschäftsführer, Schweizerischer Verband der Telekommunikation asut

Philippe Horisberger
Stv. Direktor, Bundesamt für Kommunikation

Harry Künzle
dipl. El. Ing. FH, Leiter Dienststelle Umwelt und Energie, Stadt St. Gallen, Delegierter des Schweizerischen Städteverbandes (Stv. Andreas Küng)

Niels Kuster
Prof. Dr., Geschäftsführer, IT’IS Foundation (Stv. Dr. Sven Kühn)

Stephan Netzle
Dr. iur., Präsident, Eidg. Kommunikationskommission ComCom

Manfred Portmann
AfU Kanton Freiburg, Delegierter der Konferenz der Vorsteher der Umweltschutzämter der Schweiz KVU

Carlos Quinto
Dr. med., Verbindung der Schweizer Ärztinnen und Ärzte FMH (Stv. Dr. med. Yvonne Gilli)

Alexander Reichenbach
Dipl. Umwelt-Natw. ETH, Sektionschef, Bundesamt für Umwelt

Martin Röösi
Prof. Dr., Professor für Umweltepidemiologie Swiss TPH, Leiter Beratende Expertengruppe NIS

Andreas Siegenthaler
Dr. phil. nat., Wissenschaftlicher Mitarbeiter, Bundesamt für Umwelt

Paul Steffen
Dr. sc. nat., Vizedirektor, Bundesamt für Umwelt (Vorsitz der Arbeitsgruppe)

Edith Steiner
Dr. med., Ärztinnen und Ärzte für Umweltschutz

Evelyn Stempfel
Dr. phil. nat., Sektionschefin, Bundesamt für Gesundheit

Sanne Stijve
dipl. El. Ing. EPFL, Programmleiter, Bundesamt für Bevölkerungsschutz (Stv. Frédéric Jorand)

Jürg Studerus
Swisscom (Schweiz) AG (Stv. Dr. Hugo Lehmann)

Urs Walker
Fürsprecher, Abteilungschef, Bundesamt für Umwelt

Felix Weber
Salt Mobile SA

Rolf Ziebold
Sunrise Communications AG

Externes Beratungsmandat und Sekretariat
Jürg Minger und Silvia Zimmermann, Federas Beratung AG

Wissenschaftliches Lektorat
Fredy Joss, Beatenberg

Sprachen
Dieser Bericht ist auch auf Französisch und Italienisch verfügbar, das Management Summary zudem auf Englisch.
Inhaltsverzeichnis

Management Summary
- Einleitung .. 13
 - 1.1 Ausgangslage ... 13
 - 1.2 Ziele und Vorgehen .. 13
- Rechtsgrundlagen ... 15
 - 2.1 Fernmeldebereich .. 15
 - 2.2 Umweltbereich .. 15
 - 2.3 Weitere Rechtsgebiete .. 16
- Mobilfunktechnologie .. 17
 - 3.1 Mobilfunknetze in der Schweiz .. 17
 - 3.2 Einführung von 5G .. 17
- Fakten und Prognosen ... 21
 - 4.1 Datenvolumen ... 21
 - 4.2 Netzstrukturen ... 24
 - 4.3 Ausschöpfung der Grenzwerte ... 28
 - 4.4 Kosten des Ausbaus von Mobilfunkanlagen auf 5G ... 38
- Zusammenhänge zwischen Emissionen, Immissionen und Exposition 39
 - 5.1 Begriffe .. 39
 - 5.2 Hochfrequente NIS-Quellen als Emissionen ... 39
 - 5.3 NIS-Immissionen ... 39
 - 5.4 Umweltextposition durch körperferne Quellen .. 40
 - 5.5 Exposition durch körperrnah betriebene Geräte .. 45
 - 5.6 Vergleich der Exposition durch körperrnahe und körperferne Quellen 47
 - 5.7 Einflussfaktoren auf die Exposition und Möglichkeiten der Minimierung 50
 - 5.8 Modellierung der Exposition durch 5G-Basisstationen und -Endgeräte 54
- Gesundheitliche Auswirkungen ... 57
 - 6.1 Vorbemerkungen .. 57
 - 6.2 Ziele und Vorgehen .. 57
 - 6.3 Methodische Aspekte .. 58
 - 6.4 Zusammenfassung des Kenntnisstandes 2014 .. 60
 - 6.5 Internationale Expertenberichte seit 2014 .. 62
 - 6.6 Evidenzbewertung anhand neuer Studien ... 64
- Verfahren und Vollzug .. 68
 - 7.1 Standortsuche für Antennen .. 68
 - 7.2 Bewilligung und Vollzug durch Kantone und Gemeinden 70
 - 7.3 Aktuelle Arbeiten betreffend NISV und Vollzugshilfsmittel 75
Management Summary

In der Schweiz hat die Einführung der Mobilfunktechnologie der fünften Generation (5G) begonnen. Der vorliegende Bericht erläutert technische Fakten zu 5G, setzt sich mit dem Betrieb der Schweizer Mobilfunknetze und ihrer Regulierung auseinander, schätzt die Exposition der Bevölkerung durch nichtionisierende Strahlung (NIS) ab und fasst die wissenschaftlichen Erkenntnisse zu möglichen gesundheitlichen Folgen zusammen. Der Bericht entstand in einer interdisziplinären Arbeitsgruppe im Auftrag des Eidgenössischen Departements für Umwelt, Verkehr, Energie und Kommunikation (UVEK).

Ausgangslage

Der Bundesrat will, dass die Schweiz die Chancen der Digitalisierung nutzt, und hat im Jahr 2016 die Strategie «Digitale Schweiz» lanciert. Ein wichtiges Element dieser Strategie ist die Schaffung leistungsstarker und offener Übertragungsnetze für eine konkurrenzfähige Informationsgesellschaft.

Das Fernmeldegesetz bezweckt, dass der Bevölkerung und der Wirtschaft vielfältige, preiswerte, qualitativ hochstehende sowie national und international konkurrenzfähige Fernmeldedienste angeboten werden. Wettbewerb und Marktorientierung führen dazu, dass in der Schweiz Fernmeldedienste in hoher Qualität angeboten werden.

Das Umweltschutzgesetz (USG) soll Menschen, Tiere und Pflanzen, ihre Lebensgemeinschaften und Lebensräume gegen schädliche oder lästige Einwirkungen schützen sowie die natürlichen Lebensgrundlagen dauerhaft erhalten. Im Sinne der Vorsorge sind Einwirkungen, die schädlich oder lästig werden könnten, frühzeitig zu begrenzen. Dazu sind die Emissionen so weit zu begrenzen, als dies technisch und betrieblich möglich und wirtschaftlich tragbar ist.

Auftrag

Technik und Anwendungen von 5G

Die Funktechnik von 5G erlaubt viel flexiblere und auch effizientere Netze als 4G. Die heute für 5G verfügbaren Frequenzen sind vergleichbar mit denen für 4G und WLAN, erlauben aber deutlich höhere Bandbreiten. Die maximalen Übertragungsraten von 5G liegen heute zwischen 2 und 3 Gigabit pro Sekunde, künftig könnten es mit Millimeterwellen mehr als 20 Gigabit pro Sekunde sein. Zudem gestatten auch die Rechenkapazitäten der 5G-Basisstationen und -Endgeräte eine leistungsfähigere Datenübertragung als bisher. Weiter verwendet 5G eine schlankere und flexiblere Signalstruktur als 4G. Damit können die grossen Bandbreiten und die verschiedenen Frequenzbänder effizienter genutzt werden. 5G sendet ferner fünfmal weniger Kontrollsignale aus als 4G, was die Exposition in Zeiten mit wenig Datenverkehr reduziert.

Um Signale zielgerichteter und flexibler zu übertragen, werden bei 5G auch neue Antennentecnologien eingesetzt. Mit adaptiven Antennen, die aus einer Vielzahl einzeln angesteuerter Elemente bestehen, kann das Signal gezielter in die Richtung des Nutzers bzw. seines Mobilgeräts gesendet werden als mit konventionellen Antennen. Dieses sogenannte Beamforming reduziert zum einen Störungen in den Funkzellen und zum andern (bezogen auf die gleiche Menge übertragener Daten) auch die durchschnittliche Exposition in den Funkzellen. Personen, welche sich in den antennennahen Bereichen des Beams aufhalten, werden kurzzeitig jedoch stärker exponiert.

Für die Einführung von 5G in der Schweiz wird in einem ersten Schritt das 3,5-GHz-Band genutzt. Diese Frequenzen ermöglichen es, höhere Datennengen zu übertragen, sie haben aber schlechtere Ausbreitungseigenschaften als die heute gebräuchlichen tieferen Frequenzbereiche. Im Vergleich zu diesen können sie Hindernisse wie Bäume, Gebäude, Fenster oder Fahrzeuge weniger gut durchdringen und werden auch bei der Ausbreitung durch die Luft stärker abgeschwächt. Diese schlechteren Ausbreitungseigenschaften können zum Teil durch den Einsatz adaptiver Antennen kompensiert werden.

Datenverkehr und Mobilfunknetze

Das mobil übertragene Datenvolumen in Westeuropa und damit auch in der Schweiz wird bis 2024 schätzungsweise um über 500 Prozent zunehmen. Es wird angenommen, dass dann ein Viertel des gesamten Mobilfunkdatenvolumens durch 5G übertragen werden wird; das allein entspricht knapp dem Anderthalbfachen der heute total übermittelten Datenmenge. Für das Internet der Dinge – d. h. miteinander vernetzte Geräte – wird in den nächsten fünf Jahren mit einem Wachstum von ungefähr 400 Prozent der Anzahl Datenverbindungen gerechnet.

Exposition durch nichtionisierende Strahlung

Durch körpennahe Geräte werden nicht alle Körperteile gleichmässig exponiert: Beim Telefonieren mit dem Handy am Ohr etwa nimmt der Kopf den grössten Teil der Strahlungsleistung auf. Auch die Technik beeinflusst die Exposition. So sind die neueren Mobilfunkstandards deutlich effizienter als die älteren: Telefonieren mit 3G oder 4G statt mit 2G führt zu einer deutlich tieferen Exposition. Auch eine gute Verbindungsqualität wirkt sich positiv aus: Je besser die Verbindung ist, d. h., je näher Basisstation und Handy beieinander sind und je weniger Hindernisse es auf der Funkstrecke hat, desto geringer ist die Sendeleistung, die ein Handy aufbringen muss, und desto geringer ist damit auch die Strahlungsleistung, die im Kopf oder in anderen Körperteilen absorbiert wird.

Bislang existieren erst wenige Erhebungen zur persönlichen NIS-Exposition in der Schweiz. Gemäss diesen liegt die über alle Aufenthaltsorte und die Zeit gemittelte Belastung durch körpferne NIS-Quellen typischerweise bei rund 0,2 Volt pro Meter (V/m) und ist von 2008 bis 2015 konstant geblieben. Einzig die Exposition durch Mobilfunk-Basisstationen hat
in diesem Zeitraum auf tiefem Niveau leicht zugenommen. Die durchschnittliche Exposition durch Mobilfunk-Basisstationen nimmt mit zunehmender Urbanität tendenziell zu, die Unterschiede Stadt–Land sind aber gering. Im städtischen Raum ist die kurzzeitig auftretende maximale Exposition durch die Handys umstehender Nutzer rund viermal höher als jene durch Basisstationen. Die durchschnittliche Exposition ist in öffentlichen Verkehrsmitteln am höchsten, wo viele Menschen ihr Handy im Einsatz haben (0,55 V/m).

Die absorbierbare Strahlendosis durch das eigene Endgerät kann, insbesondere bei schlechten Verbindungen zur Basisstation, um Größenordnungen höher sein als jene durch die Basisstation. Dies bedeutet, dass der weitaus grösste Teil der nichtionisierenden Strahlung, dem der durchschnittliche Nutzer ausgesetzt ist, von den körpernahen Endgeräten stammt (rund 90 %).

Stand des Wissens über gesundheitliche Folgen

Hinsichtlich eventueller gesundheitlicher Wirkungen der 5G-Funktechnologie gibt es bisher nur wenige Studien an Zellen und Tieren zu akuten Effekten. Die Risikobeschätzung der Arbeitsgruppe hat sich deshalb auf Studien abgestützt, die in der Vergangenheit zur 2G-, 3G- und 4G-Technologie durchgeführt wurden und mit Frequenzen arbeiten, die im selben Bereich liegen wie diejenigen Frequenzen, die gegenwärtig für 5G genutzt werden.

Die Arbeitsgruppe stellt fest, dass bei den heute verwendeten Mobilfunkfrequenzen unterhalb der Immissionsgrenzwerte der NISV bisher Gesundheitsauswirkungen nicht konsistent nachgewiesen wurden, während gleichzeitig aus Wissenschaft und Praxis unterschiedlich gut abgestützte Beobachtungen für Effekte unterhalb der Immissionsgrenzwerte vorliegen. Die Fragestellung für die Arbeitsgruppe war es daher, die Evidenzlage zu diesen Effekten im Hinblick auf das Vorsorgeprinzip einzuschätzen.

Die Arbeitsgruppe bewertet die Evidenz folgendermassen:

Ko-Karzinogenese. Insgesamt wird deshalb die Evidenz für eine Ko-Karzinogenese weiterhin als begrenzt gewertet.

- Es gibt ausreichend Evidenz für physiologische Effekte beim Menschen bei Exposition des Gehirns bei Strahlungsintensitäten im Bereich des ICNIRP-Richtwertes für lokale Exposition. So kommt eine Reihe von experimentellen Studien mit Versuchspersonen zum Ergebnis, dass die Exposition im Intensitätsbereich des ICNIRP-Richtwerts durch ein Mobiltelefon am Kopf die Hirnströme sowohl im wachen Ruhezustand als auch während des Schlafes beeinflusst. Da die Schlafqualität dadurch aber nicht beeinträchtigt wurde, ist die Bedeutung dieses Effekts für die Gesundheit jedoch unklar. Diese experimentellen Studien fanden teilweise auch unterschiedliche Effekte in Abhängigkeit der Modulation, was darauf hindeutet, dass neben der Signalstärke auch die Signalform der Exposition eine Rolle spielen könnte. Inwiefern die Signalcharakteristik (z. B. Modulation) eine Rolle spielt, ist aber noch zu wenig systematisch evaluiert worden.

- Es gibt kaum Studien an Menschen, bei denen der ganze Körper im Bereich des Ganzkörperrichtwertes der ICNIRP, der dem Immissionsgrenzwert für Mobilfunkbasisstationen entspricht, exponiert ist. Im Alltag kommen solche Expositionen, obwohl bis zum Grenzwert prinzipiell zulässig, praktisch nicht vor, was beobachtende Studien schwierig macht. In epidemiologischen Studien sind die am stärksten exponierten Personen deutlich weniger stark exponiert (ca. 0,2-1 V/m) als der Ganzkörperrichtswert. Eine Reihe von neuen Studien aus Holland und der Schweiz fand keinen Zusammenhang zwischen dem Auftreten von Symptomen und der NIS-Exposition am Wohnort. Das deutet darauf hin, dass es keinen solchen Zusammenhang gibt (Evidenz für Abwesenheit). In diesen Studien (wie auch in der Realität) ist der Anteil Personen, die im Vergleich zum Durchschnitt höheren Expositionen ausgesetzt sind, sehr gering. Sie sind deshalb nicht genügend aussagekräftig, um Auswirkungen bei Expositionen im Bereich des Anlagegrenzwertes und darüber zu evaluieren (Evidenz unzureichend).

- Es gibt bereits einige Zell- und Tierstudien für Expositionen im Bereich von 30 bis 65 GHz (Millimeterwellen). Die Resultate sind jedoch zu wenig robust für eine Evidenzbeurteilung.

Gesundheitsauswirkungen lassen sich wissenschaftlich nie mit absoluter Sicherheit ausschliessen. Die Arbeitsgruppe hat deshalb auch beschrieben, für welche potenziellen Effekte weitere Forschung angezeigt ist.

Optionen

Die eingebrachten Vorschläge (vgl. Abbildung 1) lassen sich in drei Gruppen unterteilen:

Für die Vollzugsbehörden ergäbe sich gegenüber heute bei allen Optionen ein deutlicher Mehraufwand, da eine Vielzahl neuer Anlagen und zahlreiche Umrüstungen bewilligt und kontrolliert werden müssten.

Die Arbeitsgruppe hat sich wegen der je nach Standpunkt unterschiedlichen Gewichtung der abzuwägenden Faktoren nicht auf eine einzige Option einigen können, sodass sie diesbezüglich keine Empfehlung abgeben kann.
Mögliche Konzepte mit Blick auf zukünftige Entwicklungen

Die beschriebenen Optionen zeigen auf, wie der Ausbau der Mobilfunknetze unter den geltenden Rahmenbedingungen oder durch Anpassungen der NISV in den nächsten Jahren vorstatten gehen könnte, um in der Schweiz rasch eine flächendeckende 5G-Versorgung anzubieten. Im Hinblick auf die zukünftige Entwicklung stellt sich auch die Frage, wie rasch es geht, bis zum Beispiel der Gewinn an Kapazität, der durch den Zubau von Makrozellen oder einer allfälligen Erhöhung der Anlagegrenzwerte erreicht wird, infolge der weiterhin stark zunehmenden mobil übertragenen Datenmenge wieder aufgebraucht ist und ein erneutes Handeln erforderlich wird.

Damit die Betreiber und auch der Regulator in wenigen Jahren nicht wieder vor den gleichen Fragen stehen wie heute, haben der Schweizerische Städteverband (SSV) und die Ärztinnen und Ärzte für Umweltschutz (AefU) Vorschläge in die Arbeitsgruppe eingebracht, die auf die mittelfristige Entwicklung des Mobilfunks zielen, wobei die dafür notwendigen Schritte bereits heute in die Wege geleitet werden könnten.

Die Hauptstossrichtungen sind eine Förderung von Kleinzellen sowie die Trennung von Innenraum- und Außenraumversorgung, basierend auf einer ausreichenden Verfügbarkeit von Glasfasernetzen. Im Vorschlag des SSV soll eine derartige Mobilfunkversorgung durch eine verstärkte Zusammenarbeit zwischen Städten/Gemeinden und Mobilfunkbetreibern erfolgen, die als Public-Private-Partnership (PPP) konzipiert wird. Im Konzept der AefU soll eine Trennung der Innen- und Außenraumversorgung durch die Senkung des Anlagegrenzwertes auf 0,6 V/m erreicht werden. Gebäude wären grundsätzlich mittels Festnetzan schlüssen und optional mit ergänzenden Kleinfunkanlagen zu erschliessen, wobei die Eigentümer und Mieter von Liegenschaften eigenverantwortlich entscheiden würden, ob in ihren Innenräumen eine mobile Versorgung erforderlich respektive erwünscht ist. Gegebenenfalls wäre eine strahlungsarme Infrastruktur mit möglichst geringer Sendeleistung zu verwenden, die Nachbarräume nicht signifikant belastet.

Ob und wie diese Netzstrukturen mit der internationalen Entwicklung der Mobilfunkstandards vereinbar sind, lässt sich heute noch nicht abschätzen. Bei der Variante der AefU mit einem Anlagegrenzwert von 0,6 V/m erachten die Mobilfunkbetreiber eine leistungsfähige Mobilkommunikation in der Schweiz als nicht mehr möglich.

Abbildung 1: Bewertung der fünf Optionen mit den Kriterien Auswirkung auf die Exposition, Zeitbedarf zur Realisierung sowie Kosten mit Zahlen der Branche (weitere Erläuterungen zur Abbildung finden sich in Kapitel 8)
Begleitende Massnahmen

Die Arbeitsgruppe schlägt folgende begleitenden Massnahmen vor:

- Vereinfachungen und Harmonisierungen beim Vollzug:
 Um den Vollzug der NISV bei der Bewilligung und Kontrolle von Mobilfunkanlagen zu vereinfachen und zu harmonisieren, sollten die Grundlagen und Prozesse, auf die sich die Bewilligungen stützen, dem neuesten Stand der Technik angepasst und aktualisiert werden.

- Monitoring der Exposition und der Gesundheitsauswirkungen:
 Es ist ein Monitoring durchzuführen, das sowohl die Exposition durch NIS als auch die möglichen gesundheitlichen Auswirkungen auf die Bevölkerung erfasst. Ein solches NIS-Monitoring wurde bereits vom Bundesrat in Auftrag gegeben und wird derzeit aufgebaut.

- Information und Sensibilisierung der Bevölkerung:
 Information ist wichtig zur Versachlichung der Diskussion. Es ist dabei aber essenziell, diese Information für die Bevölkerung verständlich zu kommunizieren. Es wird angenommen, dass öffentlich verfügbare Angaben über die einzelnen Mobilfunkanlagen die Akzeptanz der Technologie in der Bevölkerung steigern können. Damit würden die Informationen aus dem Monitoring sinnvoll ergänzt.

- Förderung der Forschung im Bereich Mobilfunk und Gesundheit:
 Angesichts der wissenschaftlichen Unsicherheiten empfiehlt die Arbeitsgruppe, dass weitere Forschung betrieben wird. Forschungsförderung wirkt sich mehrfach positiv aus: Sie schliesst wissenschaftliche Erkenntnislücken in einem politisch sensiblen Feld, sie dient als Frühwarnsystem für gesundheitliche Risiken, sie unterstützt als breit akzeptierte Begleit- und Vorsorgemaßnahme den Netzaufbau und die Kommunikation von Bund und Kantonen, und sie sichert die schweizerischen Forschungskompetenzen in einem sich enorm schnell entwickelnden Technologiebereich.

- Umweltmedizinische NIS-Beratungsstelle:
 Ebenfalls wird die Schaffung einer unabhängigen umweltmedizinischen NIS-Beratungsstelle empfohlen. Diese soll unter medizinischer Leitung interdisziplinäre umweltbezogene und umweltmedizinische Untersuchungen von Personen durchführen, die ihre Beschwerden auf NIS oder andere Umweltfaktoren zurückführen.

- Austauschplattform «Mobilfunk der Zukunft»:

Empfehlungen

Die Arbeitsgruppe gelangt zu den folgenden Empfehlungen an das UVEK:

- Die Entscheide im Hinblick auf die Weiterentwicklung des Mobilfunks in der Schweiz sollen auf die in den Kapiteln 1 bis 7 dargelegten Fakten und Prognosen abgestützt werden.

- Die unter Kapitel 8 (Optionen) eingebrachten Vorschläge sind zur Kenntnis zu nehmen.

- Die unter Kapitel 9 (Mögliche Konzepte mit Blick auf zukünftige Entwicklungen) eingebrachten Vorschläge sind zur Kenntnis zu nehmen.

- Die begleitenden Massnahmen (Kap. 10) sollen umgesetzt werden.

- Der am 28. September 2018 erteilte Auftrag ist abzuschliessen und die Arbeitsgruppe Mobilfunk und Strahlung aufzulösen.
1 Einleitung

1.1 Ausgangslage

Im Frühjahr 2019 hat der Bund im Rahmen einer Auktion eine breite Palette von neuen Frequenzen an die drei bisherigen Mobilfunkbetreiber vergeben. Diese Frequenzen sind die Voraussetzung für die Entwicklung der neuen und schnelleren Mobilfunktechnologie der fünften Generation (5G). Die darauffolgenden Ankündigungen der Betreiber, rasch ein 5G-Netz in der Schweiz aufzubauen, haben die laufenden Diskussionen über die Ausgestaltung der zukünftigen Mobilfunkversorgung zusätzlich intensiviert.

In der Diskussion um die Mobilfunktechnologie und der daraus resultierenden nichtionisierenden Strahlung geht es insbesondere um eine ausgewogene Interessenabwägung, welche faktenbasiert zwischen den Zielen des Fernmeldegesetzes auf der einen Seite und den Zielen des Umweltschutzgesetzes auf der anderen Seite vorgenommen wird.

1.2 Ziele und Vorgehen

In einem ersten Schritt wurden mit der Unterstützung von drei thematischen Untergruppen mit zusätzlichen Expertinnen und Experten, die von den Mitgliedern der Arbeitsgruppe beigezogen wurden, die Fakten zusammengetragen:

- Untergruppe 1: Datenverkehr und Standortwahl (Entwicklung der Mobilfunktechnologie, Datenvolumen, Netzstruktur, Ausschöpfung der Grenzwerte, Standortsuche für Antennen, Vollzug);
Untergruppe 2: Datenvolumen und Exposition (Zusammenhang zwischen Datenvolumen, Strahlung und Exposition, Exposition der Bevölkerung und der Nutzenden durch Basisstationen und Endgeräte bei verschiedenen Netzstrukturen, NIS-Monitoring);

Untergruppe 3: Gesundheitliche Auswirkungen (aktueller Stand der wissenschaftlichen Forschung und neue Erkenntnisse zu den Wirkungen von hochfrequenten Strahlung auf den Menschen, gegenwärtige und zukünftige reale Exposition der Bevölkerung durch Basisstationen und Endgeräte).

Um die Inhalte der Berichterstattung an das UVEK für die Arbeitsgruppe Mobilfunk und Strahlung vorzubereiten, wurde eine Kerngruppe gebildet. Die Kerngruppe beauftragte die Mitglieder der Arbeitsgruppe, auf Basis der erarbeiteten Fakten einen Katalog von möglichen Massnahmen im Hinblick auf eine bedürfnisgerechte Mobilfunkversorgung auszuarbeiten, und nahm eine thematische Gruppierung vor. Daraus wurden Optionen abgeleitet, die jeweils die zentralen Ansprüche einer Stakeholdergruppe in Bezug auf 5G abdecken und mit denen die Herausforderungen in Bezug auf 5G angegangen werden könnten. Diese Optionen wurden sodann in Bezug auf verschiedene Aspekte bewertet. Namentlich wurden Kosten und Zeitbedarf bei den Betreibern, Veränderung der Exposition der Bevölkerung, administrativer Aufwand für Behörden und Netzbetreiber und die Auswirkungen auf die Leistungsfähigkeit eines Mobilfunknetzes untersucht und beurteilt. Schliesslich wurden aus den Optionen Empfehlungen ausgearbeitet, die in die Arbeitsgruppe und den Schlussbericht einfließen.

Der vorliegende Schlussbericht der Arbeitsgruppe stellt die aktuellen Fakten zur Mobilfunktechnologie, zu Datenverkehr und Netzstrukturen, zur Exposition der Bevölkerung, zu den gesundheitlichen Auswirkungen und zu Vollzugsaspekten zusammen. Die zuhanden der politischen Entscheidungsinstanzen von beteiligten Stakeholdern eingbrachten fünf Optionen (Kap. 8), zwei Vorschläge für künftige Entwicklungen (Kap. 9) und sechs begleitenden Massnahmen (Kap. 10) wurden in der Absicht formuliert, eine Mobilfunkversorgung unterschiedlicher Qualität und Ausprägung unter Beachtung der Schutz- und Nutzungsziele in näherer Zukunft zur Diskussion zu stellen.
2 Rechtsgrundlagen

2.1 Fernmeldebereich

Das Fernmeldewesen ist nach Artikel 92 der Bundesverfassung Sache des Bundes. Das Fernmeldegesetz (FMG) bezieht, dass der Bevölkerung und der Wirtschaft vielfältige, preiswerte, qualitativ hochstehende sowie national und international konkurrenzfähige Fernmeldedienste angeboten werden.

Entsprechend den Zielen des Fernmeldegesetzes und der Strategie «Digitale Schweiz» sollen die Rahmenbedingungen für den Ausbau der Kommunikationsinfrastruktur derart ausgestaltet sein, dass die Schweiz im internationalen Wettbewerb eine führende Position einnehmen kann. Vor diesem Hintergrund stellt die 5G-Technologie ein wichtiges Element dar.

2.2 Umweltbereich

Für den Bereich des Immissionsschutzes (u. a. Mobilfunkstrahlung) wird das Vorsorgeprinzip in Artikel 11 Absatz 2 USG präzisiert. Demnach sind Emissionen unabhängig von der bestehenden Umweltbelastung im Rahmen der Vorsorge so weit zu begrenzen, als dies technisch und betrieblich möglich und wirtschaftlich tragbar ist. Das so verankerte Vorsorgeprinzip ist ein Grundprinzip des Schweizer Umweltrechts und wird auch in zahlreichen internationalen Dokumenten und Übereinkommen erwähnt. Ihm liegt der Gedanke zugrunde, unüberschaubare Risiken zu vermeiden und Unsicherheiten über längerfristige Wirkungen von Umweltbelastungen dadurch zu berücksichtigen, dass eine Sicherheitsmarge...
eingepflanzt wird. Bei der Bestimmung des zulässigen Masses der Emissionsbegrenzung ist ein angemessenes Verhältnis zwischen den angeordneten Vorsorgemaßnahmen und den damit vermiedenen Risiken anzustreben.

In einem zweiten Schritt müssen die Emissionsbegrenzungen nach Artikel 11 Absatz 3 USG über vorsorgliche Massnahmen hinaus verschärft werden, wenn feststeht oder zu erwarten ist, dass die Einwirkungen unter Berücksichtigung der bestehenden Umweltbelastung schädlich oder lästig werden.

Eine Änderung bzw. Lockerung der heutigen vorsorglichen Emissionsbegrenzungen würde den Nachweis bedingen, dass die zur Einhaltung der geltenden Anlagegrenzwerte notwendigen Massnahmen technisch oder betrieblich nicht mehr möglich oder wirtschaftlich nicht mehr tragbar sind.

Die Nachbarstaaten der Schweiz, die meisten Staaten der Europäischen Union und die USA richten sich allein nach dem international anerkannten IGW und kennen keinen zusätzlichen, tieferen AGW. International wird der Vorsorgegedanke oftmals mit anderen Konzepten und Massnahmen umgesetzt, zum Beispiel mit Risikomonitoring, Information und dedizierter Forschung.

2.3 Weitere Rechtsgebiete

Neben den Sendeantennen der Basisstationen geben auch Handys und andere Telekommunikations-Endprodukte nichtionisierende Strahlung an die Umgebung ab. Deren Begrenzung ist nicht Gegenstand des schweizerischen Umweltschutzgesetzes, sondern des Produktsicherheitsrechts. Hinsichtlich der Strahlungsintensität gelten die gleichen Anforderungen wie in der Europäischen Union, d. h., die Hersteller von Telekommunikations-Endprodukten müssen sichergestellen, dass solche Geräte die Gesundheit der Nutzerinnen und Nutzer nach aktuellem Stand des Wissens und der Technik nicht gefährden. Sie müssen zu diesem Zweck die Grenzwerte einhalten, welche die entsprechende Empfehlung des Europäischen Rates festlegt.
Mobilfunktechnologie

3.1 Mobilfunknetze in der Schweiz

3.2 Einführung von 5G

3.2.1 Technik und Anwendungen von 5G

Tabelle 1: Anforderungen an 5G und Unterschiede gegenüber 4G

<table>
<thead>
<tr>
<th>Anforderungen an 5G</th>
<th>Unterschiede von 5G gegenüber 4G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Bandbreite: >10 GBit/s Peak</td>
<td>Die Datenübertragungsrate ist 100-mal höher.</td>
</tr>
<tr>
<td>Kurze Latenz: 1–4 ms Air Interface</td>
<td>Die Reaktionszeit (Latenz) ist 30- bis 50-mal kürzer.</td>
</tr>
<tr>
<td>Hohe Sicherheit und Verfügbarkeit: 99,999 Prozent</td>
<td>Bedienung von 100-mal mehr Endgeräten (eine Million Geräte pro km²)</td>
</tr>
<tr>
<td>Sehr hohe Gerätedichte (für IoT)</td>
<td>Die Stromautonomie ist 10-mal höher.</td>
</tr>
<tr>
<td>Lange Batterielaufzeit (für IoT): >10 Jahre</td>
<td></td>
</tr>
<tr>
<td>Stromautonomie vernetzter IoT-Geräte: >10 Jahre</td>
<td></td>
</tr>
</tbody>
</table>
Mit 5G werden grössere Übertragungsrate und kürzere Reaktionszeiten möglich, aber auch die Anzahl vernetzter Geräte und die Energieeffizienz pro übermittelte Dateneinheit nehmen zu. Neben diesen quantitativen Anforderungen von IMT-2020 ermöglicht 5G neue qualitative Aspekte, die bisher nicht oder nur begrenzt möglich waren. Im Vergleich zu den bisherigen Mobilfunkgenerationen stellt 5G damit verschiedene Weiterentwicklungen und neue Anwendungen in Aussicht:

- 5G ermöglicht in den Bereichen Smart-City und Smart-Home eine bessere Bewirtschaftung und Auslastung der Infrastruktur (Verkehrsmanagement, Energiesteuerung etc.).
- Es sollen Verbesserungen für das Internet der Dinge (IoT) und hochverfügbare Netze ermöglicht werden. Hierzu soll das Mobilfunknetz flexibler werden.
- Edge-Computing ermöglicht Computing- und Storage-Dienste nahe beim Kunden. Damit wird die Performance verbessert und den Anforderungen an Datensicherheit entsprochen, was gerade bei kritischen Infrastrukturen oder Industriebetrieben zwingend notwendig ist.
- Unternehmen können ihre Produktionsprozesse und Logistik effizienter gestalten, indem Mobilfunknetze direkt in ihrem Wertschöpfungsprozess eingesetzt werden. Um auch für die erwartete grosse Verbreitung des Internets der Dinge gerüstet zu sein, wird 5G gegenüber heute eine rund 100-mal höhere Anzahl von Geräten pro Funkzelle be- dienen können.
- Mit den tiefen Reaktionszeiten von einigen wenigen Millisekunden werden das Fernsteuern und Kontrollieren von Geräten, Maschinen oder Anlagen verzögerungsfrei und in Echtzeit möglich – beispielsweise von autonomen Verkehrsträgern (Fahrzeugen und Drohnen), Produktionsmaschinen oder Industrierobotern.
- Virtuelle und erweiterte Realitätsdarstellungen werden durch 5G schneller, realistischer und in Echtzeit möglich.

Um die Ziele von 5G zu erreichen, sind jedoch auch Änderungen in der Funktechnik nötig. So sind etwa Anpassungen an der Signalstruktur der Funksignale, der sogenannten Luftschnittstelle, erforderlich. Es handelt sich hier um eine Weiterentwicklung der Luftschnittstelle der Vorgängertechnologie LTE (4G). Bei 5G wird die Luftschnittstelle «New Radio» genannt. Um die grösseren Bandbreiten (bis zu 800 MHz) und die verschiedenen Frequenzbänder effizienter nutzen zu können, musste die Signalstruktur schlanker und flexibler gestaltet werden. 5G wird daher wesentlich weniger Kontrollsignale aussenden als 4G. Diese Anpassungen an der Signalstruktur werden nicht nur zu weniger Störungen in den Funkzellen führen und damit die Übertragungsqualität erhöhen, sondern auch die gemittelte Exposition in der nicht genutzten Funkzelle reduzieren. In einem 5G-Netz können die genutzten Bandbreiten gegenüber 4G flexibler eingestellt werden, um 5G sowohl in tieferen als auch höheren Frequenzbändern zu betreiben. Auch die Koexistenz von 4G und 5G innerhalb des gleichen Frequenzbands soll möglich sein. 5G soll es ferner ermöglichen, zusätzliche Kapazitäten über die WLAN-Funktionen zu nutzen. Der Vorteil liegt darin, dass alle Anwendungen durch eine Technologie global zur Verfügung stehen, was Innovationen vorantreibt und Kosten reduziert.

Auf der Endgeräteseite ist die Bandbreite ebenfalls flexibel. Ein Mobilfunkgerät muss nicht unbedingt die gesamte von der Basisstation vorgeschlagene Bandbreite nutzen, sondern funktioniert auch nur mit einem Teil davon. Damit kann das Gerät Strom sparen, was die lange Batterielaufzeit bei Sensoren erklärt.

Ein Überblick über die Entwicklung von 5G im Ausland findet sich auf den Internetseiten des 5G Observatoriums der EU.

3.2.2 Neue Antennentechnologien

Funktechnisch gesehen können Frequenzen um 3,5 GHz mehr Bandbreite transportieren, sie haben aber schlechtere Ausbreitungseigenschaften als die bisher genutzten Frequenzbereiche (800 MHz bis 2,6 GHz), sie werden bei der Übertragung durch die Luft oder durch Gebäudehüllen stärker abgeschwächt. Um diese schlechteren Eigenschaften zu verringern, können adaptive Antennen eingesetzt werden. Mit solchen Antennen, die aus einer Vielzahl von einzeln angesteuerten Antennenelementen bestehen, kann das Signal in die Richtung des Nutzers bzw. des Mobilfunkgeräts gesteuert werden («Beamforming»).

Eine Übertragungstechnik mit Antennen, die aus mehreren Sende- und Empfangsantennen oder -antennenteilen besteht, wird als MIMO (Multiple Input Multiple Output) oder bei sehr vielen Sendenantennen auch als Massiv-MIMO bezeichnet und ist ebenfalls für 5G vorgesehen. Die Sendeleistung wird auf alle Sendenantennen aufgeteilt und das zu übertragende Signal von allen Antennenelementen ausgesendet respektive auch von mehreren Antennenelementen empfangen. Die Empfangsqualität wird damit verbessert und sowohl die Reichweite als auch die mögliche Datenübertragungsrate werden erhöht.

3.2.3 Ausblick auf den Anwendungsbedarf von Millimeterwellen im Mobilfunk

4 Fakten und Prognosen

4.1 Datenvolumen

4.1.1 Prognosen für die globale Datenentwicklung

Abbildung 2 zeigt die erwartete Zunahme der übertragenen Daten nach den Technologien 5G und älter. Es ist erkennbar, dass das mit der 5G-Technologie übertragene Datenvolumen relativ langsam zunehmen wird, da die Einführung einer neuen Technologie immer eine gewisse Zeit in Anspruch nimmt.

Abbildung 2: Entwicklungsprognose für das globale Datenvolumen nach den Technologien 5G und älter (4G, 3G und 2G) [EB per month: exabytes \(10^{18}\) pro Monat]

Der Hauptteil des mobilen Datenverkehrs wird (auch international) durch Videoanwendungen verursacht (rund zwei Drittel), wobei in diesem Bereich eine weitere starke Zunahme prognostiziert wird (vgl. Ziff. 4.2.1.).

Im Bereich von Anwendungen des Internets der Dinge wird in den nächsten fünf Jahren mit einem Wachstum von ungefähr 400 Prozent der Anzahl Datenverbindungen gerechnet.
Nach dieser Prognose wird das totale mobil übertragene Datenvolumen in Westeuropa bis 2024 gegenüber 2018 um mehr als den Faktor 5 (524 %) ansteigen. Es wird angenommen, dass 2024 ein Viertel des gesamten Volumens durch 5G übertragen wird, was allein ca. dem 1,3-fachen der heute total übertragenen Datenmenge entspricht.

4.1.2 Prognosen für die Schweiz

Alle drei Betreiber in der Schweiz (Swisscom, Sunrise, Salt) geben an, dass ihre Daten sich gleichermassen in die Anwendungskategorien aufteilen wie dies im Ericsson Mobility Report gemäss Abbildung 4 ersichtlich ist. So machen die Videoanwendungen mit etwa 60 Prozent den grössten Anteil am gesamten Datenvolumen aus. Die Betreiber und auch Ericsson erwarten, dass dieser Anteil in den kommenden Jahren weiter stark anwachsen wird, da Bildübertragungen in vielen Bereichen zunehmen werden, zum Beispiel Unterhaltung, Produktion, Bildung, Videokonferenzen, Überwachung, Medizin, Virtual und Augmented Reality (virtuelle und erweiterte Realitätsdarstellungen).
Die Betreiber gehen davon aus, dass etwas weniger als die Hälfte der Daten in der urbanen Zone übermittelt werden, knapp ein Drittel auf die suburbane Zone entfallen und rund ein Viertel der Daten in der ruralen Zone gesendet werden.

Tabelle 2 zeigt die Anteile der Sendeleistungen und Datenvolumen in der Schweiz nach den Generationen von Mobilfunktechnologien im Jahr 2018 auf.

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Sendeleistung</th>
<th>Datenvolumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>5 %</td>
<td><1 %</td>
</tr>
<tr>
<td>3G</td>
<td>25 %</td>
<td>5 %</td>
</tr>
<tr>
<td>4G</td>
<td>70 %</td>
<td>95 %</td>
</tr>
</tbody>
</table>

4G hat in den letzten fünf Jahren in der Schweiz den weitaus grössten Teil des Datenvolumens übernommen und überträgt heute 95 Prozent aller Daten.

4.2 Netzstrukturen

4.2.1 Heutiges Netz

Mobilfunknetze sindzellulare Netze. Bei diesen wird der Versorgungsbereich des Funknetzes in eine Vielzahl von aneinander angrenzenden und überlappenden Funkzellen beschränkter Größe eingeteilt, welche je durch eine Basisstation versorgt werden.

Tabelle 3: Zellentypen

<table>
<thead>
<tr>
<th>Zellentyp</th>
<th>Typischer Versorgungsradius</th>
<th>Art der Versorgung</th>
</tr>
</thead>
</table>
| Makrozelle | bis 5 km (typisch 1 bis 2 km) | Grossflächig, ausserhalb und innerhalb von Gebäuden sowie mobile Nutzung (Zug, Auto, Bus etc.)
(In den Städten sind Distanzen von 300 bis 500 m zwischen den Makrozellenanlagen schon heute typisch.) |
| Mikrozelle* | 50 bis 200 m (typisch 100 m) | In Gebieten mit hohem Verkehrsaufkommen, ausserhalb und innerhalb von Gebäuden |
| Picozelle*, Femtozelle* | kleiner als 100 m (typisch weniger als 50 m) | Meistens innerhalb von Gebäuden, oft mit wenigen Teilnehmenden |

* Diese Typen werden in diesem Bericht zusammengefasst als Kleinzellen bezeichnet.

4.2.2 Planungskompetenzen beim Mobilfunk

Grundsätzlich ist also nicht ausgeschlossen, dass ein Kanton oder eine Gemeinde gewisse räumliche Vorgaben zur Entwicklung des Mobilfunknetzes macht. Dabei sind die bundesrechtlichen Vorgaben zu beachten, und das im Fernmeldegesetz verankerte Interesse an einer qualitativ guten, preiswerten und innovativen Mobilfunkversorgung ist zu berücksichtigen. Eine Priorisierung der Festnetz-Infrastruktur oder einer flächigen WLAN-Versorgung gegenüber den mobilen Fernmeldenetzen und eine Trennung von Innen- und Aussenversorgung sind gesetzlich nicht vorgesehen. Kommunale
Vorschriften dürfen nicht die in der Fernmeldegesetzgebung des Bundes konkretisierten öffentlichen Interessen verletzen, d. h., sie müssen den Interessen an einer qualitativ guten Mobilfunkversorgung und an einem funktionierenden Wettbewerb zwischen den Mobilfunkanbietern Rechnung tragen.

4.2.3 Netzstrukturen im Hinblick auf die Einführung von 5G

Zurzeit wird in einem ersten Schritt mit 5G vorwiegend das Frequenzband um 3,5 GHz genutzt.30 Die Frequenzen über 24 GHz (Millimeterwellen) werden in der Schweiz erst zu einem späteren Zeitpunkt für 5G eingesetzt werden können (vgl. Kap. 3.2.3). Ihre Nutzung ist auf räumlich begrenzte Orte mit sehr grossem Bedarf an Übertragungskapazität und entsprechender Ultrabreitband-Versorgung (sog. Hotspots) beschränkt.

4.2.4 Netzstruktur mit Kleinzellen

4.2.5 Besonderheiten im urbanen Raum

Der Hauptanteil des mobilen Datenverkehrs in der Schweiz wird in Städten generiert. Das nahe Nebeneinander von Gebieten mit hohem Datenverkehr, vielen sicherheitsrelevanten Diensten, vielfältigen Nutzungsmöglichkeiten (in Gebäuden bis zum Untergeschoss, auf stark frequentierten Plätzen etc.) sowie die hohe Dichte an OMEN in Wohn- und Erholungsräumen ist eine besondere Herausforderung für die funktechnische Versorgung des städtischen Raums. Im urbanen Raum bestehen deshalb besonders hohe Ansprüche an eine moderne Mobilfunkversorgung, welche die Bedürfnisse einer mobilen Gesellschaft abdecken müssen. Die Verdichtung des Mobilfunknetzes ist heute und in Zukunft unabdingbar.

4.2.6 Besonderheiten entlang von Eisenbahnachsen

Aufgrund der allgemein wachsenden Nachfrage nach drahtloser Konnektivität und der rechtlichen Rahmenbedingungen in der Schweiz sehen sich die SBB als zusätzlicher Mobilfunkbetreiber (Mobilfunk ausschliesslich für Bahnkommunikation) mit ähnlichen Herausforderungen konfrontiert wie die drei kommerziellen Mobilfunkbetreiber. Mit der digitalisierten Bahnproduktion steigen die Anforderungen an die Mobilfunkversorgung signifikant, weshalb die SBB planen, zwischen 2022 und 2032 eine leistungsfähige, zuverlässige und hochverfügbare Mobilfunk-Konnektivität für den Bahnbetrieb aufzubauen.

Beider Kommunikation vom und zum Zug unterscheidet man grundsätzlich zwischen den folgenden Kommunikationsarten mit dem entsprechenden prognostizierten Bedarf:

Tabelle 4: Zukünftiger Bedarf bei der Bahnkommunikation

<table>
<thead>
<tr>
<th>Kommunikationsart</th>
<th>Versorgungszweck</th>
<th>Zukunftiger Bedarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Communication</td>
<td>Für den Bahnbetrieb kritische Funktionen (z. B. Zugsteuerung)</td>
<td><10 MBit/s</td>
</tr>
<tr>
<td>Performance Communication</td>
<td>Optimierung des Bahnbetriebs (z. B. Überwachungsvideos, Kundeninformation)</td>
<td><50 MBit/s</td>
</tr>
<tr>
<td>Business Communication</td>
<td>Versorgung der Fahrgäste (z. B. Telefonie, Internet im Zug)</td>
<td>≤1 GBit/s</td>
</tr>
</tbody>
</table>

Bei der Mobilfunkversorgung entlang des technischen Bahnhorridors entstehen nur kurzzeitige Leistungsspitzen der elektrischen Feldstärken, bezogen auf die entsprechenden Aufenthaltsorte des fahrenden Zuges. Die Belastung durch die Bahnkommunikation fällt mit Ausnahme von Orten mit empfindlicher Nutzung (OMEN) an stark frequentierten
Strecken nur kurzzeitig an. Die durchschnittliche Belastung der OMEN liegt heute deutlich unter dem geltenden Anlagegrenzwert.

Im Zentrum der Überlegung zur optimalen Versorgung steht weniger die Fragestellung, ob die Abdeckung für die Bahnkommunikation oder für die Fahrgastversorgung erfolgt, sondern vielmehr, ob sie nur auf die Bahlinie (in der Regel zwei Antennenausrichtungen) oder auch auf die umliegenden Gebiete (in der Regel drei Antennenausrichtungen) erfolgen soll.

Es ist davon auszugehen, dass wie bei den kommerziellen Mobilfunkanbietern auch bei den SBB und weiteren Schweizer Eisenbahnen zukünftig höhere Frequenzen zum Einsatz kommen. Um die Versorgungsqualität in diesen Frequenzbereichen zu erhalten, werden bei gleichbleibender Netzstruktur höhere Sendeleistungen benötigt oder mit den geltenden gesetzlichen Rahmenbedingungen eine Verdichtung der Antennenstandorte. Abhängig vom gewählten Modell für die zukünftige Mobilfunknetzstruktur der SBB ist für deren Netzausbau zur Sicherstellung der Critical Communication mit bis zu 3000 neuen Antennenstandorten (auf rund 5000 Streckenkilometern) zu rechnen. Heute betreiben die SBB rund 1200 Mobilfunkstandorte.

Die Anzahl der benötigten Antennenstandorte wird vor allem durch folgende Faktoren beeinflusst:

- regulatorische Rahmenbedingungen der NISV (gesetzliche Grenzwerte);
- zugeteilte Frequenzspektrum-Anteile für die Versorgung im technischen Bahnkorridor (Zuordnung auf europäischer Ebene);
- technische Möglichkeiten für die Kommunikation in den Zügen (z. B. Antennentechnologien oder «gelaserte» Fenster, welche Mobilfunksignale besser durchdringen als herkömmlich beschichtete Fenster).

Neben dem wirtschaftlichen Aspekt sprechen im Zusammenhang mit den hohen Zugsgeschwindigkeiten auch technische Aspekte gegen zu kurze Abstände der Antennenstandorte. Wäre eine kurzzeitige Überschreitung des vorsorglichen Anlagegrenzwerts (z. B. in maximal 5 % der Zeit) bis zu einem bestimmten Mass zugelassen, so würde sich die Anzahl der benötigten Antennenstandorte für die Versorgung im technischen Bahnkorridor verringern, was entsprechende Kosteneinsparungen zur Folge hätte. Aufgrund diverser offener Fragen im Zusammenhang mit den genannten Faktoren können zum heutigen Zeitpunkt noch keine monetären Angaben zum Sparpotenzial gemacht werden. Im Hinblick auf den anstehenden Bau der künftigen Mobilfunkversorgung für den Bahnbetrieb führen die SBB gemeinsam mit weiteren Netzbetreibern verschiedene Tests durch, um die Versorgung in den Zügen unter Verwendung unterschiedlicher Anteile des Frequenzspektrums und verschiedener Technologien zu untersuchen. Erste Erkenntnisse werden demnächst erwartet.

4.3 Ausschöpfung der Grenzwerte

4.3.1 Datengrundlage

Die Datengrundlage zu diesem Kapitel basiert auf einer im Dezember 2018 durchgeführten Erhebung über die Betriebsinformationen der drei Mobilfunkbetreiber in der Schweiz.

Gemäss Definition der NISV besteht jede Mobilfunkanlage aus einem oder mehreren Antennenmasten. In der Schweiz gibt es 12 274 Mobilfunkanlagen, die aus etwa 18 000 Antennenmasten bestehen (Stand Dezember 2018). In dieser Erhebung wurden die ca. 1200 Mobilfunkanlagen der SBB nicht berücksichtigt, die Polycom-Anlagen ebenfalls nicht. Bei den Anlagen mit einer Sendeleistung unter 6 W ERP wurden die nicht fix installierten Kleinzellen (z. B. Femtozellen in Privathaushalten) ebenfalls nicht in die Zählung einbezogen.
Für die Auswertung des Ausschöpfungsgrads sind die Anlagen von weniger als 6 W ERP nicht von Interesse, weil für diese kein vorsorglicher Anlagegrenzwert gilt und in der Regel ein vereinfachtes Bewilligungsverfahren zur Anwendung kommt (vgl. Kap. 4.2.1). Damit verbleibt ein Total von 8542 Anlagen mit einer Sendeleistung von mehr als 6 W ERP, welche im Folgenden untersucht und beschrieben werden.

- Urban: >200 User/ha
- Suburban: 50–200 User/ha
- Rural: <50 User/ha

Von den 8542 Anlagen stehen 2060 in urbanem Gebiet, 2733 in suburbaner Umgebung und 3748 in der ruralen Zone.

Zur Verifizierung der Statistik hat das BAKOM die Angaben von 1 Prozent der Anlagen (85 Anlagen) überprüft. Innerhalb jedes Kantons wurden zufällig drei Anlagen ausgewählt, wobei jeweils eine aus den Zonen urban, suburban und rural sowie jeweils eine von den drei Betreibern. Zusätzlich wurde in sieben Kantonen jeweils eine weitere Anlage ausgewählt, wiederum verteilt auf die Zonen und Betreiber.

<table>
<thead>
<tr>
<th>Betreiber</th>
<th>Urban</th>
<th>Suburban</th>
<th>Rural</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Sunrise</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Swisscom</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>85</td>
</tr>
</tbody>
</table>

Bei der Überprüfung wurden die Angaben der prozentualen Ausschöpfung des AGW sowie der prozentualen Leistungs- ausschöpfung mit den Angaben in der NIS-Datenbank (NIS-DB) des BAKOM verglichen.
Tabelle 7: Ergebnis der Stichproben

<table>
<thead>
<tr>
<th>Stichproben</th>
<th>%</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>82%</td>
<td>Angaben der Statistik identisch zur NIS-DB (Abweichung <1%; Rundungsfehler)</td>
</tr>
<tr>
<td>11</td>
<td>13%</td>
<td>Standortdatenblatt-Version in der NIS-DB musste aktualisiert werden</td>
</tr>
<tr>
<td>5</td>
<td>6%</td>
<td>Temporär ein Service nicht in Betrieb. Die Anlage bleibt jedoch in der Ausschöpfungskategorie. Eine Nachkontrolle ergibt korrekte Angaben.</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>Überschreitung der bewilligten Sendeleistung</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>Überschreitung des Anlagegrenzwerts</td>
</tr>
<tr>
<td>88</td>
<td>100%</td>
<td>Total</td>
</tr>
</tbody>
</table>

Die Auswertung der Stichproben bestätigt, dass die Daten, welche von den Betreibern im Dezember 2018 geliefert wurden, korrekt sind. Darauf basierend konnte die Statistik zuverlässig erstellt werden.

4.3.2 Ausschöpfung des Anlagegrenzwertes gemäß Bewilligung

Aus den Bewilligungsdaten jeder Anlage wurde derjenige OMEN herausgesucht, für welchen im Standortdatenblatt die größte Feldstärke berechnet wurde (in % des AGW). Dieses Vorgehen stellt eine Worst-Case-Betrachtung in Bezug auf eine Senderichtung dar, während offengelassen wird, ob in anderen Senderichtungen noch Potenzial für mehr Sendeleistung bestehen würde. In Abbildung 5 ist ersichtlich, dass im urbanen und suburbanen Gebiet die meisten Mobilfunkanlagen den AGW gemäß Berechnung im Standortdatenblatt weitgehend ausschöpfen.
Abbildung 5: Ausschöpfung des AGW (urban, suburban)

Abbildung 6: Ausschöpfung des AGW (rural)

4.3.3 Ausschöpfung der bewilligten Sendeleistung

Neben der Ausschöpfung des AGW gemäß Berechnung im Standortdatenblatt ist auch von Interesse, in welchem Mass die Mobilfunkanlagen die bewilligten Sendeleistungen auch tatsächlich ausnutzen. Dazu wird die derzeitig eingestellte Sendeleistung (d. h. die momentan eingestellte Leistung, mit der die Anlage senden würde, falls sie voll ausgelastet wäre) mit der bewilligten Sendeleistung gemäß Standortdatenblatt verglichen. Pro Standort wird nur der Sektor mit der höchsten Auslastung herangezogen. Dieser muss nicht unbedingt in Richtung des gemäß Berechnung höchstdelasteten OMEN liegen. Diese Auswertung gibt Aufschluss darüber, wie stark das Mobilfunknetz tatsächlich ausgelastet ist und ob die Mobilfunkanlagen noch «stille Reserven» haben. Abbildung 7 zeigt, dass die meisten Mobilfunkstationen in den urbanen und suburbanen Gebieten die bewilligte Sendeleistung ausschöpfen. Im ruralen Gebiet nutzen hingegen einige Anlagen die bewilligte Sendeleistung nicht vollständig aus:
Abbildung 7: Ausschöpfung der bewilligten Sendeleistung (urban, suburban)
4.3.4 Ausbaureserve

Mit der Untersuchung der Ausbaureserve soll aufgezeigt werden, ob die Basisstationen funktionell weiter ausgebaut werden können, da die 5G-Technologie zusätzlich auf den bestehenden Standorten aufzuschalten. Der Untersuchung wird das Szenario zugrunde gelegt, wonach 5G auf den bestehenden Standorten (ohne zusätzliche Antennen), ergänzend zu den bisherigen Technologien (ohne Abschaltung vorhandener Dienste an einem Standort) und in voller Leistungsfähigkeit implementiert wird.

Als Mass für den möglichen Ausbau wird die Sendeleistung genommen, welche an einem Standort zusätzlich zu den bereits bestehenden Diensten aufgeschaltet werden könnte, bis der AGW ausgeschöpft ist. Ausgewählt wird derjenige Sektor, in welchem die grösste Leistungsausschöpfung vorhanden ist. Es wurden einerseits der Ausschöpfungsgrad des AGW durch die bewilligte Feldstärke und andererseits die Ausschöpfung der bewilligten Sendeleistung im gegenwärtigen Betrieb ausgewertet und miteinander kombiniert.

Um ein flächendeckendes 5G-Mobilfunknetz mit den bestehenden Mobilfunkanlagen erstellen zu können, müssen die Zellradien der einzelnen Mobilfunkzellen unverändert bleiben. Gemäss der Erläuterung in Kapitel 4.3.6.1 müsste dazu die Sendeleistung einer Mobilfunkanlage um den Faktor 12,4 gesteigert werden können. Das heisst, dass eine bestehende Mobilfunkanlage die maximal mögliche Sendeleistung bloss zu 8 Prozent ausschöpfen darf, damit auf ihr ein qualitativ zufriedenstellender Ausbau auf 5G im Frequenzband 3,5 GHz erfolgen kann. In Tabelle 9 wird dieser Wert auf 10 Prozent aufgerundet.

Anlagen, welche die maximal mögliche Sendeleistung zu mehr als 10 Prozent bzw. zu weniger als 80 Prozent ausnutzen, können nur noch mit weiteren Frequenzbän dern mit der 4G-Technologie ausgebaut werden. Die Ausnutzungsgrenze von 80 Prozent wurde für die Modellrechnungen festgelegt, welche in Tabelle 9 dargestellt sind. Es wird damit angenommen, dass eine Anlage ab diesem Wert nicht mehr ausgebaut werden kann. Die Betreiber selbst gehen davon aus, dass eine Anlage mit einer Auslastung der maximalen Sendeleistung zwischen 10 und 50 Prozent gut ausbaubar, zwischen 50 und 70 Prozent bedingt ausbaubar und bereits ab 70 Prozent nicht mehr ausbaubar ist.
Die Berechnung der Ausbaubarkeit erfolgte in zwei Schritten:

- Erstens wurde der OMEN mit dem höchsten Ausschöpfungsgrad des AGW durch die bewilligte Feldstärke herangezogen. Wird der auf die Feldstärke bezogene Ausschöpfungsgrad quadriert, erhält man den Ausschöpfungsgrad bezogen auf die maximal mögliche Sendeleistung, mit welcher der AGW noch eingehalten ist (vgl. Tabelle 8).
- Da die Betreiber frei sind, weniger als die maximale bewilligte Sendeleistung zu nutzen, muss in einem zweiten Schritt die Ausschöpfung der bewilligten Sendeleistung betrachtet werden.

Ob eine Anlage im Mobilfunknetz (Stand Dezember 2018) ausgebaut werden kann, ergibt sich durch die Kombination der beiden Ausschöpfungen der maximal möglichen Sendeleistung bis zum AGW (Bewilligung) und der Ausschöpfung der bewilligten Sendeleistung (vgl. Tabelle 9). Die Ausschöpfung des AGW am höchstbelasteten OMEN und die höchste Ausschöpfung der bewilligten Sendeleistung muss nicht unbedingt im selben Sektor liegen.

Tabelle 8: Ausschöpfung der maximal möglichen Sendeleistung

<table>
<thead>
<tr>
<th>Ausnutzung der bewilligten Feldstärke bis AGW</th>
<th>Ausschöpfung der bewilligten Sendeleistung bis AGW</th>
<th>Urban</th>
<th>Suburban</th>
<th>Rural</th>
<th>Schweiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>90–100 %</td>
<td>80–100 %</td>
<td>1510 (73 %)</td>
<td>1900 (70 %)</td>
<td>1273 (34 %)</td>
<td>4683</td>
</tr>
<tr>
<td>30–90 %</td>
<td>10–80 %</td>
<td>535 (26 %)</td>
<td>810 (30 %)</td>
<td>1813 (48 %)</td>
<td>3158</td>
</tr>
<tr>
<td>0–30 %</td>
<td>0–10 %</td>
<td>15 (1 %)</td>
<td>23 (1 %)</td>
<td>662 (18 %)</td>
<td>700</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2060 (100 %)</td>
<td>2733 (100 %)</td>
<td>3748 (100 %)</td>
<td>8541</td>
</tr>
</tbody>
</table>

Tabelle 9: Ausbaubarkeit der Mobilfunkanlagen

<table>
<thead>
<tr>
<th>Ausbaubarkeit</th>
<th>Ausschöpfung des AGW und der maximalen Sendeleistung</th>
<th>Urban</th>
<th>Suburban</th>
<th>Rural</th>
<th>Schweiz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht ausbaubar</td>
<td>80–100 %</td>
<td>1190 (58 %)</td>
<td>1496 (55 %)</td>
<td>706 (19 %)</td>
<td>3392</td>
</tr>
<tr>
<td>4G ausbaubar</td>
<td>10–80 %</td>
<td>834 (40 %)</td>
<td>1179 (43 %)</td>
<td>2046 (55 %)</td>
<td>4059</td>
</tr>
<tr>
<td>Auf 5G ausbaubar</td>
<td>0–10 %</td>
<td>36 (2 %)</td>
<td>58 (2 %)</td>
<td>996 (26 %)</td>
<td>1090</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2060 (100 %)</td>
<td>2733 (100 %)</td>
<td>3748 (100 %)</td>
<td>8541</td>
</tr>
</tbody>
</table>
Daraus ergibt sich die folgende grafische Darstellung:

Abbildung 9: Ausbaubarkeit der Mobilfunkanlagen nach Zonen

4.3.5 Interpretation der Datenauswertung

4.3.6 Resultierende zukünftige Bedürfnisse

Mit der Versteigerung von Anfang 2019 wurden zu der bestehenden Bandbreite von 575 MHz zusätzliche 445 MHz vergeben (weitere 30 MHz, die zur Verfügung standen, sind nicht vergeben worden). Die ebenfalls als 5G-Pionierband eigneten Frequenzen von 3,41 bis 3,5 GHz werden in der Schweiz heute noch von anderen Anwendungen belegt (z. B. drahtlose TV-Kameras), dürften aber ebenfalls bald dem Mobilfunk zugeführt werden, wobei die spezifische Nutzung (z. B. durch sogenannte Campus-Lösungen) noch nicht feststeht.

Damit steht in der Schweiz heute eine totale Bandbreite von 1020 MHz für den Mobilfunk zur Verfügung. Dies entspricht einem Zuwachs von 77 Prozent. Im 3,5-GHz-Band alleine sind 300 MHz dazugekommen, das heisst 67 Prozent des Zuwachses befindet sich im 3,5-GHz-Band.

Um die Erwartungen an die neue Mobilfunkgeneration erfüllen und das Potenzial von 5G vollumfänglich nutzen zu können, müssen gewisse Mindestanforderungen aus technischer Sicht gewährleistet werden. In einem ersten Ausbauschritt soll das Frequenzband zwischen 3,5 und 3,8 GHz für 5G eingesetzt werden, mit Trägerbandbreiten bis typisch 300 MHz. Eine minimale Bandbreite von 80 MHz ist notwendig, um eine deutliche Verbesserung gegenüber 4G zu erreichen.

Eine Abschaltung von 2G oder auch 3G wird in Bezug auf die Einführung von 5G einen geringen Einfluss haben und dem nach kaum Entlastung der Netzausschöpfung bringen (vgl. Tabelle 2). 2G beansprucht heute nur noch rund 5 Prozent

4.3.6.1 Zusätzlicher Leistungsbedarf zur Realisierung von 5G mit 80 MHz im 3,5-GHz-Band
Durch die Verwendung neuer Frequenzbänder im 3,5-GHz-Band entsteht ein zusätzlicher Leistungsbedarf:

- Zusätzliche Bandbreite: Um 5G in einem ersten Schritt sinnvoll auszubauen, sollten 80 MHz Bandbreite genutzt werden können. Unter der Annahme, dass die bestehenden Basisstationen für den Ausbau von 5G genutzt werden und dass heute von den Betreibern zwischen 40 und 75 MHz Bandbreite auf einem Standort genutzt werden, muss im Mittel eine um den Faktor 2,39 (3,78 dB) erhöhte Leistung möglich sein, wobei für die neuen Frequenzen noch eine zusätzliche Korrektur für Verluster nötig ist (siehe nachfolgende Punkte).

- Ausbreitungsverluste: Soll 5G im 3,5-GHz-Band auf bestehenden Standorten genutzt werden, muss bei gleicher Signalqualität am Rand der Zelle, verglichen mit 1,8 GHz, 3,78-mal mehr Leistung (5,78 dB) abgestrahlt werden.

Eigene Messungen der Mobilfunkbetreiber ergeben für den Vergleich von 2,1 GHz zu 3,5 GHz zusätzliche Ausbreitungsverluste um den Faktor 2,75 (4,40 dB). Um diese Verluste zu kompensieren, wird eine mittlere Erhöhung der Leistung um mindestens den Faktor 3,27 (5,14 dB) benötigt.

- Gebäudedämpfung: Zu berücksichtigen ist zudem die höhere Dämpfung von Gebäuden bei höheren Frequenzen, wobei eine Erhöhung um den Faktor 3 (5,00 dB) im Vergleich zu 1,8 GHz angegeben wird. Diese Penetrationsverluste müssen also mit einer Erhöhung der Leistung um den Faktor 2,51 (4,00 dB) kompensiert werden. Die Frequenzabhängigkeit der Gebäudedämpfung wird heute bei der Berechnung der Belastung der ÖMEN nicht berücksichtigt.

Unter Berücksichtigung der drei oben genannten Punkte resultiert für den gesamten Leistungsbedarf an einem bestehenden Standort ein totaler Faktor von 12,4 (3,39 × 3,27 × 2,51 + 1) oder umgerechnet 10,9 dB. Insgesamt müsste daher 12,4-mal mehr Leistung zur Verfügung stehen, damit 5G vollumfänglich auf den heute existierenden Standorten genutzt werden könnte (ohne Berücksichtigung einer allfälligen neuen Bewertungsmethode der massgebenden Sendeleistung beim Einsatz von adaptiven Antennen).

4.3.6.2 Abschätzung des Bedarfs an zusätzlichen Standorten

4.3.6.3 Weiterer Leistungsbedarf zur Realisierung eines vollständigen 5G-Ausbaus
Um die volle Leistungsfähigkeit von 5G erreichen zu können, reichen 100 MHz Bandbreite nicht aus. Daher werden für 5G zusätzlich zum 3,5-GHz-Frequenzband auch Bänder bei 700 MHz und 1,4 GHz sowie zu einem späteren Zeitpunkt Frequenzen oberhalb von 24 GHz (sogenannte Millimeterwellen) zum Einsatz kommen. Auch für diese Frequenzen müssen entsprechende Sendeleistungen zur Verfügung gestellt werden können.
4.4 Kosten des Ausbaus von Mobilfunkanlagen auf 5G

Tabelle 10: Investitionen (Capex) und Betriebskosten (Opex) pro Mobilfunkanlage (in CHF, gerundet auf 5000).

<table>
<thead>
<tr>
<th>Anlage/Upgrade bestehende Mobilfunkanlage</th>
<th>Capex</th>
<th>Opex pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neubau einer 5G-Mobilfunkanlage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dachantenne/Rooftop</td>
<td>245 000</td>
<td>15 000</td>
</tr>
<tr>
<td>Frei stehende Antennenmasten/Greenfield</td>
<td>305 000</td>
<td>15 000</td>
</tr>
<tr>
<td>Kleinzelten (Mikrozellen um 6 W ERP)</td>
<td>50 000</td>
<td>5000</td>
</tr>
<tr>
<td>5G-Upgrade bestehende Mobilfunkanlage (ohne Kleinzelten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5G-Upgrade</td>
<td>105 000</td>
<td>5000</td>
</tr>
<tr>
<td>Mitbenutzung bestehende Mobilfunkanlage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dachantenne/Rooftop</td>
<td>165 000</td>
<td>15 000</td>
</tr>
<tr>
<td>Frei stehende Antennenmasten/Greenfield</td>
<td>215 000</td>
<td>15 000</td>
</tr>
</tbody>
</table>

5 Zusammenhänge zwischen Emissionen, Immissionen und Exposition

5.1 Begriffe
Um die Belastung der Bevölkerung mit nichtionisierender Strahlung (NIS) zu charakterisieren, sind verschiedene Grössen relevant:

- **Die Emissionen** bezeichnen die Sendeleistung einer Quelle und werden typischerweise in Watt (W) gemessen. Häufig wird auch die äquivalente Strahlungsleistung (ERP) einer Antenne benutzt.

- Die Verteilung von NIS in der Umwelt wird als **Immissionen** dargestellt (elektrische Feldstärke in Volt pro Meter (V/m) oder Leistungsflussdichte in W/m²).

- Mit der **Exposition** wird NIS am Ort, wo sich eine Person befindet, quantifiziert (V/m oder W/m²).

- Die **Dosis** bezeichnet die vom Körper absorbierte NIS (spezifische Absorptionsrate [SAR in W/kg]). Wird sie über einen bestimmten Zeitraum aufgenommen, spricht man von kumulativer Dosis. Die kumulative Dosis erhält man durch die Multiplikation des SAR-Wertes mit der Zeitdauer. Sie wird als Joule (J) pro Kilogramm Körpergewicht pro Tag quantifiziert.

- Als **Effekt** wird die biologische oder gesundheitliche Auswirkung bezeichnet (vgl. Kap. 6).

5.2 Hochfrequente NIS-Quellen als Emissionen
Die hochfrequenten NIS-Quellen können grob in zwei Kategorien eingeteilt werden:

- **Körpernah betriebene Quellen** wie Mobil- und Schnurlostelefone oder Laptops: Die Person befindet sich typischerweise im Nahfeld, und die zeitlich und räumlich gemittelte spezifische Absorptionsrate (SAR-Wert) ist die maßgebende Expositionsgröße (Einheit: W/kg). Der SAR-Wert ist zeitlich gemittelt, d. h., er erfasst weder Modulation noch kurzzeitige Unterbrüche der Strahlung. Zur Exposition durch diese Quellen vgl. Kapitel 5.5.

5.3 NIS-Immissionen
NIS-Immissionen sind vielfältig:

- Sie unterscheiden sich erstens durch ihre Frequenz; für den Mobilfunk kommen in der Schweiz seit längerem Frequenzbänder um 400 (Polycom), 800 und 900 MHz sowie 1,8, 2,1 und 2,6 GHz zum Einsatz. Anfang 2019 wurden zudem Frequenzen um 700 MHz, 1,4 und 3,5 GHz für den Mobilfunk freigegeben. Für WLAN werden Frequenzen um 2,4 und 5 GHz verwendet.

Drittens weisen die Immissionen je nach Quelle ein unterschiedliches zeitliches Muster auf. Die Strahlung von Rundfunksendeanlagen beispielsweise ist zeitlich konstant, während diejenige von Mobilfunksendeanlagen je nach Auslastung des Netzes schwankt.

Schliesslich hat die Strahlung je nach Quelle oder Technologie (Rundfunk, Mobilfunk, WLAN, Schnurlostetelefone, Radar etc.) eine andere Signalform. Die Spanne reicht von einem annähernd sinusförmigen Signal ohne Verzerrungen und Unterbrüche bis zu gepulster Strahlung mit sehr kurzen Pulsen und vergleichsweise langen inaktiven Pausen im Fall der Radarstrahlung.

Welches Expositionsmass bei alltäglichen Immissionen biologisch relevant sein könnte, ist unklar. Denkbar ist, dass die mittlere Immission von Bedeutung ist, es könnte aber auch die Maximalbelastung relevant sein oder die Dauer, während derer ein bestimmter Pegel überschritten wird. Ungewiss ist auch, ob bestimmte Signalformen, insbesondere pulsierte, biologisch besonders wirksam sind.

Mit der Netzstruktur (vgl. Kap. 4.2) kann sowohl die Höchstbelastung als auch die mittlere Immission in einem gewissen Rahmen beeinflusst werden. Die Signalform hingegen hängt von der eingesetzten Technologie ab.

5.4 Umweltexposition durch körperferne Quellen

5.4.1 Erhebungsmethoden

5.4.2 Resultate aus persönlichen Messungen

Bislang existieren erst wenige Erhebungen zur persönlichen HF-NIS-Exposition in der Schweiz. Die neuesten Daten wurden 2015/2016 bei 115 Personen aus dem Kanton Zürich erhoben. Die mittlere gemessene persönliche HF-NIS-Exposition der Studienteilnehmenden betrug 0,18 V/m, wobei die Hauptbeiträge von Mobilfunkbasisstationen (38 %) und von Mobiltelefonen, hauptsächlich anderer Personen (35 %) stammten. Weniger relevant waren Rundfunk (18 %), WLAN (5 %) und Schnurlostetelefone (4 %). Die HF-NIS-Exposition war bei jungen Erwachsenen (0,22 V/m) etwas höher als bei Jugendlichen und ihren Eltern (je 0,16 V/m). Der höchste gemessene Mittelwert lag bei 0,42 V/m. Bei diesen Messungen ist der Beitrag der eigenen Telefons stark unterschätzt, da das eigene Telefon direkt am Körper betrieben wird und das weiter entfernte Messgerät nur einen kleinen Teil misst. Die Unterschiede zwischen Bewohnern von ländlichen und städtischen Gebieten waren relativ gering, tendenziell nahm jedoch die HF-NIS-Exposition von Mobilfunkbasisstationen mit zunehmender Urbanität zu.

Auch andere persönliche Mesststudien aus Europa und Australien finden typischerweise eine durchschnittliche HF-NIS-Exposition im Bereich von 0,2 V/m.

Am höchsten waren die Werte beim Uplink (Strahlung von Mobilfunktelefonen), insbesondere unterwegs in Bus, Zug, Tram oder Bahn. In der Schule führte die gelegentliche Nutzung des Mobiltelefons der Schüler ebenfalls zu einem recht hohen 99-Perzentilwert für Uplink, obwohl die mittlere Exposition in der Schule relativ niedrig war.

Die maximal aufgetretenen 99-Perzentilwerte beim Downlink (Strahlung von Mobilfunkantennen) betrugen im Zug 5 V/m und sonst unter 3 V/m (Tabelle 12). Das bedeutet, dass selbst bei Summierung aller Frequenzbänder der Mobilfunkbasisstationen die gemessene Exposition nur selten in den Bereich von 4 bis 6 V/m kommt und damit in den Feldstärkebereich, der als Anlagegrenzwert festgelegt ist. Anzumerken ist, dass sich der Anlagegrenzwert auf die Strahlung einer einzelnen Mobilfunkanlage bezieht und nicht überall, sondern nur an Orten mit empfindlicher Nutzung eingehalten sein muss.

Tabelle 11: Mittlere 99. Perzentile in der Zürcher Studienpopulation für verschiedene Aktivitäten. Alle Werte sind in V/m angegeben.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Total HF-EMF</th>
<th>Rundfunk</th>
<th>Downlink</th>
<th>Uplink</th>
<th>DECT</th>
<th>WLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>zu Hause</td>
<td>0,22</td>
<td>0,14</td>
<td>0,11</td>
<td>0,07</td>
<td>0,05</td>
<td>0,12</td>
</tr>
<tr>
<td>Schule</td>
<td>1,29</td>
<td>0,21</td>
<td>0,58</td>
<td>1,12</td>
<td>0,02</td>
<td>0,13</td>
</tr>
<tr>
<td>Arbeitsplatz</td>
<td>0,49</td>
<td>0,10</td>
<td>0,29</td>
<td>0,28</td>
<td>0,28</td>
<td>0,09</td>
</tr>
<tr>
<td>draussen</td>
<td>1,08</td>
<td>0,29</td>
<td>0,78</td>
<td>0,72</td>
<td>0,03</td>
<td>0,11</td>
</tr>
<tr>
<td>Bus</td>
<td>1,71</td>
<td>0,43</td>
<td>0,95</td>
<td>1,47</td>
<td>0,11</td>
<td>0,13</td>
</tr>
<tr>
<td>Zug</td>
<td>2,23</td>
<td>0,14</td>
<td>1,23</td>
<td>1,98</td>
<td>0,03</td>
<td>0,15</td>
</tr>
<tr>
<td>Tram</td>
<td>1,19</td>
<td>0,20</td>
<td>0,85</td>
<td>0,89</td>
<td>0,04</td>
<td>0,07</td>
</tr>
<tr>
<td>Auto</td>
<td>1,29</td>
<td>0,21</td>
<td>0,58</td>
<td>1,12</td>
<td>0,02</td>
<td>0,13</td>
</tr>
<tr>
<td>anderes</td>
<td>1,15</td>
<td>0,12</td>
<td>0,62</td>
<td>0,90</td>
<td>0,05</td>
<td>0,12</td>
</tr>
</tbody>
</table>

Tabelle 12: Maximal aufgetretene 99. Perzentile in der Zürcher Studienpopulation für verschiedene Aktivitäten. Alle Werte sind in V/m angegeben.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Total HF-EMF</th>
<th>Rundfunk</th>
<th>Downlink</th>
<th>Uplink</th>
<th>DECT</th>
<th>WLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>zu Hause</td>
<td>0,84</td>
<td>0,84</td>
<td>0,46</td>
<td>0,41</td>
<td>0,34</td>
<td>0,57</td>
</tr>
<tr>
<td>Schule</td>
<td>6,04</td>
<td>0,96</td>
<td>2,52</td>
<td>5,01</td>
<td>0,05</td>
<td>0,54</td>
</tr>
<tr>
<td>Arbeitsplatz</td>
<td>1,83</td>
<td>0,31</td>
<td>1,09</td>
<td>1,25</td>
<td>1,76</td>
<td>0,42</td>
</tr>
<tr>
<td>draussen</td>
<td>5,00</td>
<td>1,13</td>
<td>1,85</td>
<td>5,00</td>
<td>0,15</td>
<td>0,60</td>
</tr>
<tr>
<td>Bus</td>
<td>5,01</td>
<td>2,11</td>
<td>2,35</td>
<td>5,00</td>
<td>0,44</td>
<td>0,44</td>
</tr>
<tr>
<td>Zug</td>
<td>7,11</td>
<td>0,58</td>
<td>5,02</td>
<td>5,15</td>
<td>0,10</td>
<td>0,55</td>
</tr>
<tr>
<td>Tram</td>
<td>4,18</td>
<td>0,47</td>
<td>1,84</td>
<td>4,15</td>
<td>0,08</td>
<td>0,14</td>
</tr>
<tr>
<td>Auto</td>
<td>6,04</td>
<td>0,96</td>
<td>2,52</td>
<td>5,01</td>
<td>0,05</td>
<td>0,54</td>
</tr>
<tr>
<td>anderes</td>
<td>5,01</td>
<td>0,51</td>
<td>2,34</td>
<td>5,00</td>
<td>0,22</td>
<td>0,41</td>
</tr>
</tbody>
</table>
5.4.3 Resultate aus Mikroumgebungsmessungen

5.4.4 Zeitliche Entwicklung der HF-NIS-Exposition

Abbildung 12: Vergleich der persönlichen HF-NIS-Exposition von zwei Messstudien aus der Schweiz

5.4.5 Ausblick auf 5G

Simulationen haben gezeigt, dass die Absorption von 3,5-GHz-Signalen bei einer Fernfeldexposition nicht zu höheren Ganzkörper-SAR-Werten führt als für die Vorgängertechnologien. Verglichen mit tieferen Frequenzen wird die Energie weniger stark in den inneren Organen des Körpers absorbiert. Ungefähr 95 Prozent der Energie werden in der Haut und bis 2 cm darunter absorbiert. Interessant waren die Messungen an Testanlagen, die aufgezeigt haben, dass die mittleren Leistungsflussdichten in einem Abstand von nur 6 m zur adaptiven Antenne gerade 5 Prozent der Immissionsgrenzwerte der ICNIRP darstellten.
Einige Modellierungsarbeiten haben sich damit auseinandergesetzt, was eine realistische Maximalexposition (definiert als das 95. Perzentil) bei den bei 5G zum Einsatz kommenden Massiv-MIMO-Antennen im Vergleich zum theoretischen Maximum ist. Eine Modellierungsstudie aus dem Jahr 2017 geht davon aus, dass bei diesen adaptiven Antennen, welche sich kurzzeitig auf Nutzer ausrichten, die Exposition im zeitlichen Mittelwert tiefer ausfällt. Für eine Vielzahl von realistischen, aber konservativ ausgewählten Konfigurationen mit einer adaptiven Antenne im Frequenzbereich von 3,5 GHz wurde berechnet, dass für 95 Prozent aller Situationen die über 6 Minuten gemittelte Exposition bezogen auf die Leistungsflussdichte weniger als 15 Prozent des theoretischen Maximalwertes beträgt (bzw. 39 % bezogen auf die elektrische Feldstärke). Eine entscheidende Annahme bei diesen Berechnungen ist, wie die Nutzer geografisch verteilt sind und wie groß der Datentransfer zu diesen Nutzern ist. Bei einer angenommenen höheren Nutzerdichte im Zentrum der Funkzelle und einer Netzauslastung von rund 95 Prozent wurde der höchste Wert berechnet: Dieser lag bei 22 Prozent des theoretischen Maximalwerts bezogen auf die Leistungsflussdichte (bzw. 47 % bezogen auf die elektrische Feldstärke). Die Langzeitmittelwerte liegen dabei mit 1,5 bis 7 Prozent (bezogen auf die Leistungsflussdichte) weit unterhalb der höchsten 6-Minuten-Mittelwerte. Jedoch zeigen auch die älteren Mobilfunkstandards 6-Minuten-Mittelwerte, die deutlich unter dem maximalen Betriebszustand liegen (UMTS sendet im Stand-by im Vergleich zur Volllast mit 16 % Leistung, und für LTE beträgt die Sendeleistung in 90 % aller Situationen bei hoher Auslastung weniger als 12 % der maximal erlaubten Leistung.)

5.5 Exposition durch körpernah betriebene Geräte
5.5.1 Bisherige Technologien
Die Benutzung eines Mobiltelefons führt zu einer Exposition des Kopfes oder der Hand einer Person durch HF-NIS, wenn die Person das Gerät zum Telefonieren direkt an das Ohr oder für weitere Anwendungen wie beispielsweise die Nutzung des mobilen Internets in der Hand hält. Die Exposition durch Endgeräte (Handy, Laptop, Tablet, Schnurlostelefon etc.) hängt von folgenden Faktoren ab:

- Nutzungsdauer: Die Strahlung tritt insbesondere dann auf, wenn das Gerät sendet. Im Ruhezustand oder wenn das Gerät Daten empfängt, ist die Exposition klein.
- Distanz des Geräts zum Körper: Mit zunehmender Distanz nimmt die Exposition rasch ab. Dies kann zum Beispiel bei Mobiltelefonen durch den Einsatz von Freisprecheinrichtungen (Head-Sets) erreicht werden (Abnahme der Exposition bis zu einem Faktor 100).
- Sendeleistung: Je stärker die Sendeleistung, desto höher die Exposition. Die Sendeleistung ihrerseits ist abhängig von:
 - Verbindungsqualität: Je besser die Verbindungsqualität ist, je «einfacher» das Signal also eine Basisstation bzw. einen Access Point erreichen kann, also insbesondere je kürzer die Distanz zwischen Gerät und Basisstation ist, desto geringer ist die Sendeleistung, die das Gerät dafür aufbringen muss.

Endgeräte weisen eine Leistungsregelung auf. Je nach Netzwerkqualität und Netzwerktyp unterscheiden sich deshalb die Sendeleistungen deutlich. Einige Messstudien zu Mobiltelefonen haben gezeigt, dass Anrufe auf dem 3G-Netzwerk (UMTS) im Alltag zu rund 100- bis 500-mal weniger hohen Emissionen führen als Anrufe auf dem 2G-Netzwerk (GSM). Die Art der Mobiltelefonnutzung (Anruf, Daten) spielt für die Sendeleistung ebenfalls eine Rolle. Da die Verbindungsqualität im städtischen Gebiet im Allgemeinen besser ist, ist die Sendeleistung von Mobiltelefonen dort im Durchschnitt
geringer als in ländlichen Gegenden.\(^{58}\) Dieser Befund wurde bei Messungen im Jahr 2010 auch für die Schweiz bestätigt.\(^{59}\) Die Sendeleistung eines UMTS-Telefons war mehr als 100-mal kleiner als diejenige eines GSM-Telefons, und je besser die Verbindungsqualität war, desto tiefer war die Sendeleistung.

Für 4G-Endgeräte ergaben 300 000 Messwerte der Sendeleistung in Schweden während sieben Tagen ähnliche Werte wie für UMTS-Endgeräte, trotz zehnmal höherem Datentransfer.\(^{60}\) In ländlichen Gegenden lag das 95. Perzentil der Sendeleistung bei 2,2 Prozent der maximalen Sendeleistung und in städtischen Gebieten bei weniger als 1 Prozent der maximalen Sendeleistung. Noch geringer waren die Werte in Bürogebäuden.

Kürzlich wurden die Sendeleistungen von Endgeräten bei verschiedenen Nutzungen in verschiedenen Netzwerken (GSM, UMTS und WLAN) bei guter und schlechter Verbindungsqualität in Serbien systematisch untersucht.\(^{61}\) Dabei zeigte sich, dass UMTS bei guter Empfangsqualität zu geringeren Emissionen führt als GSM und WLAN.

5.5.2 Ausblick auf 5G

Für 5G-Mobiltelefone werden die SAR-Messungen und die einschlägigen Normen für Messungen für den Frequenzbereich von 30 MHz bis 6 GHz angewendet.\(^{63}\) Anders sieht es für diejenigen 5G-Mobiltelefone aus, die Millimeterwellen oberhalb 6 GHz (typischerweise über 24 GHz) nutzen werden. Dieser Frequenzbereich soll zu einem späteren Zeitpunkt für 5G eingesetzt werden – in Europa wahrscheinlich frühestens um 2020, für die Schweiz liegt noch kein Zeitplan vor. Für diese Frequenzen mit einem wesentlich anderen Ausbreitungsverhalten wurden in den letzten Jahren neue Messtechniken entwickelt, die es erlauben, die in diesem Frequenzbereich relevante Leistungsdichte (in W/m²) zu messen.\(^{64}\) Bisher wurde für numerische Studien der Absorption von elektromagnetischen Wellen im Menschen die Haut in den meisten Fällen als absorbierendes, homogenes Medium mit einem bestimmten Wassergehalt modelliert. Weitere Details wie die verschiedenen Schichten der Haut und weitere darin enthaltene Strukturen wurden meist nicht berücksichtigt. Es handelt sich hier um grosse Vereinfachungen, da die Haut als komplexes Organ aufzufassen ist. In verschiedenen Publikationen wurde ab 2018 ein Temperaturanstieg von 0,1 °C durch die Exposition mit einem Handy bei 28 GHz berechnet.\(^{65}\) Im Weiteren wurde festgestellt, dass die Haut durch verschiedene Schichten gut angenähert werden kann.\(^{66}\) Diese Studie unterstreicht auch die Wichtigkeit der Mittelungsfläche, damit bei Einhaltung der Grenzwerte ein Temperaturanstieg von mehr als 1 °C vermieden werden kann.

5.6 Vergleich der Exposition durch körpernahe und körperferne Quellen

5.6.1 Grundsätzliches

Ein weiterer Unterschied besteht darin, dass bei 2G, 3G und 4G die Basisstation dauernd ein Kontrollsignal sendet, das Endgerät jedoch nur während eines Gesprächs oder bei Datenverkehr (auch im Standby-Modus); bei 5G sendet die Basisstation weniger Kontrollsignale als bei den früheren Technologien. Wenn kein Gespräch oder keine Daten übermittelt werden – also im Bereitschafts- oder Stand-by-Modus – sendet ein eingeschaltetes Endgerät nur alle paar Minuten ein kurzes Signal, um mitzuteilen, in welcher Zelle es sich befindet.

Tabelle 13: Exposition durch Basisstationen (Makrozellen) und Endgeräte im Vergleich

<table>
<thead>
<tr>
<th>Basisstation</th>
<th>Endgerät</th>
</tr>
</thead>
<tbody>
<tr>
<td>· meistens stärkerer Sender</td>
<td>· schwacher Sender</td>
</tr>
<tr>
<td>· größere Distanz zu Personen</td>
<td>· je nach Anwendung sehr kleine bis kleine Distanz zum Körper</td>
</tr>
<tr>
<td>· gleichmäßige Exposition des ganzen Körpers</td>
<td>· lokale Exposition eines Körperteils</td>
</tr>
<tr>
<td>· geringe absorbierte Leistung</td>
<td>· sehr hohe lokal absorbierte Leistung</td>
</tr>
<tr>
<td>· Exposition dauernd vorhanden, aber im Tagesgang und bei dynamischer Steuerung der Leistung und Senderichtung unterschiedlich</td>
<td>· Strahlung nur während einer Verbindung vorhanden (Gespräch, Datenverkehr)</td>
</tr>
<tr>
<td>· gibt die Strahlung grossflächig ab und exponiert alle Personen in der Umgebung</td>
<td>· exponiert hauptsächlich den Benutzer sowie in der Nähe befindliche Nichtnutzer</td>
</tr>
</tbody>
</table>

5.6.2 Vergleich der absorbierten Dosis

2013 wurde erstmals ein Vergleich zwischen Nah- und Fernfeldexposition durchgeführt. Dazu wurden für verschiedene Fernfeld- und Nahfeldexpositions-situationen die Ganzkörper- und organspezifische SAR berechnet und diese Werte mit der entsprechenden Expositions- oder Nutzungsdauer multipliziert, um auf diese Weise die kumulative Dosis pro 24 Stunden zu erhalten. Als Grundlage für die Berechnungen wurden die in der Qualifex-Studie erhobenen mittleren HF-

Tabelle 14: Ganzkörper- und organspezifische kumulative 24-Stunden-Dosis (in mJ/kg) für die mittlere Exposition in der Qualifex-Studie.⁷⁰ (Mittelwert von total 198 Exposimetermessungen)

<table>
<thead>
<tr>
<th>Organ</th>
<th>GSM-900-Mobiltelefon</th>
<th>UMTS-Mobiltelefon</th>
<th>DECT Schnurlostelefon</th>
<th>Summe Fernfeldquellen</th>
<th>Verhältnis (Nah-/Fernfeld) für GSM</th>
<th>Verhältnis (Nah-/Fernfeld) für UMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganzkörper</td>
<td>111</td>
<td>0,7</td>
<td>27</td>
<td>35</td>
<td>3</td>
<td>0,8</td>
</tr>
<tr>
<td>Gehirn (graue Substanz)</td>
<td>1002</td>
<td>5</td>
<td>197</td>
<td>42</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>1109</td>
<td>5</td>
<td>187</td>
<td>27</td>
<td>41</td>
<td>7</td>
</tr>
<tr>
<td>Nervengewebe</td>
<td>23</td>
<td>0,09</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>0,6</td>
</tr>
<tr>
<td>Rotes Knochenmark</td>
<td>46</td>
<td>0,2</td>
<td>9</td>
<td>20</td>
<td>2</td>
<td>0,5</td>
</tr>
<tr>
<td>Hoden</td>
<td>0,7</td>
<td>0,001</td>
<td>0,03</td>
<td>76</td>
<td>1:100</td>
<td>1:2350</td>
</tr>
</tbody>
</table>

- Mittleres Szenario unter der Annahme, dass je 50 Prozent der Anrufe auf dem GSM- und dem UMTS-Netzwerk stattfinden;
- alle Anrufe finden entweder auf dem UMTS- oder dem GSM-Netzwerk statt;
- Sensitivitätsanalyse, bei welcher für jedes Frequenzband der Mobilfunkbasisstationen jeweils der höchste gemessene Mittelwert eines Probanden während der gesamten Messperiode verwendet wird.

Wenn man die Downlink-Bänder addiert, ergibt sich für das erste und zweite Szenario eine mittlere Feldstärke von 0,11 V/m für die Immissionen von Mobilfunkbasisstationen. Bei der Sensitivitätsanalyse mit dem jeweils höchsten gemessenen Downlink ergibt sich für die fünf einbezogenen Frequenzbänder ein Summenwert für Downlink von 0,51 V/m.

Abbildung 13 zeigt die verschiedenen Quellenbeiträge der durchschnittlichen HF-NIS-Gehirn- und Ganzkörperdosis. Beim Gehirn stammen 96,2 Prozent der gesamten Dosis von 594 mJ/kg/Tag von Nahfeldquellen. Am relevantesten sind Mobiltelefonanrufe, die 78 Prozent zur kumulativen Gehirndosis beitragen. Fernfeldquellen tragen nur minimal zur Ge-
hirndosis bei: Rundfunk 0,9 Prozent, Mobilfunk-Downlink 2,1 Prozent, WLAN 0,1 Prozent, Schnurlostelefonbasistatio-
nen 0,1 Prozent und Mobiltelefone anderer Personen 0,5 Prozent. In Bezug auf die Ganzkörperexposition sind Fernfeld-
quellen relevanter, dennoch tragen sie zur kumulativen Dosis von insgesamt 194 mJ/kg/Tag nur 10,2 Prozent bei. Etwa
die Hälfte des Fernfeldbeitrags stammt von Mobilfunkbasistationen (5 % an der gesamten Dosis). Bei der Gerätenut-
zung sind für die kumulative Ganzkörperdosis neben Mobiltelefonanrufen (33 %) auch die Beiträge von Schnurlostele-
fonaten (8 %), Datenverkehr mit Mobiltelefonen (19 %) sowie Computer, Laptops und Tablets (29 %) relevant.

Abbildung 13: Überblick über die durchschnittliche 24-stündige kumulative HF-NIS-Dosis des Gehirns (links) und
des ganzen Körpers (rechts) unter der Annahme, dass Mobiltelefonanrufe zu je 50 Prozent auf dem GSM- und
dem UMTS-Netzwerk stattfinden. Man beachte die unterschiedliche Skalierung. Die Prozentwerte geben jeweils
die Anteile von körpernah (links) und körperfrem (rechts) betriebenen HF-NIS-Quellen an der Gesamtdosis an.

Da bei Mobiltelefonanrufen auf dem UMTS-Netzwerk die Emissionen deutlich geringer sind, ergibt sich für das zweite
Szenario ein ganz anderes Bild, wenn man annimmt, dass alle Mobiltelefonanrufe auf dem UMTS-Netzwerk stattfinden.
In diesem Fall verringert sich die 24-stündige kumulative HF-NIS-Gehirndosis auf 136 mJ/kg/Tag und die Ganzkörperex-
position auf 130 mJ/kg/Tag. Mobiltelefonanrufe tragen in diesem Falle nur noch 5 Prozent zur Gehirndosis bei, und der
größte Anteil an der kumulativen Gehirndosis stammt von Schnurlostelefonanrufen (78 %). Bei der Ganzkörperexposi-
tion stammen die Hauptbeiträge vom Datenverkehr mit Mobiltelefonen (29 %) sowie von Computern, Laptops und Tab-
lets (43 %). Der Anteil von Mobiltelefonanrufen macht nur 0,7 Prozent an der Gesamtkörperdosis aus. Nimmt man hin-
gegen an, dass alle Mobiltelefonanrufe auf dem GSM-Netzwerk durchgeführt werden, kommt man auf eine kumulative
Gehirndosis von 1052 mJ/kg/Tag (Beitrag Mobiltelefonanrufe: 87 %) und auf eine kumulative Ganzkörperdosis von 258
mJ/kg/Tag (Beitrag Mobiltelefonanrufe: 50 %).
Im dritten Szenario wurde evaluiert, wie gross der Beitrag von Mobilfunkbasisstationen an der kumulativen HF-NIS-Dosis ist, wenn für den Downlink der maximale Wert von 0,51 V/m verwendet wird. Da diese Höchstwerte von verschiedenen Probanden stammen, stellt dieses Szenario also einen absoluten Worst-Case dar, der so nicht im Studienkollektiv vorgekommen ist. Für die Mobiltelefonanrufe wurde wiederum angenommen, dass sie je zu 50 Prozent auf dem GSM- und dem UMTS-Netzwerk stattgefunden haben. Bei diesem Downlink-Worst-Case-Szenario beträgt die kumulative Gehirndosis 827 mJ/kg/Tag und die Ganzkörperdosis 333 mJ/kg/Tag. Die tägliche Benützung eines Mobiltelefons während 5,2 Min./Tag trägt aber immer noch stärker zur Gehirndosis bei als die Exposition durch den Downlink (57 % gegenüber 29 %). Bei der Ganzkörperexposition stammt in diesem Fall knapp die Hälfte (44 %) vom Downlink. Dieser Beitrag ist ungefähr gleich gross wie der Beitrag von Mobiltelefonanrufen und Datenverkehr auf Mobiltelefonen, Computern, Laptops und Tablets zusammen (48 %). Dies zeigt, dass auch unter Worst-Case-Bedingungen bei durchschnittlicher Kommunikationsgerätenutzung ein erheblicher Teil der kumulativen Ganzkörperdosis von der eigenen Gerätenutzung stammt (52 %).

Es ist zu betonen, dass diese mittleren Dosisberechnungen mit grossen Unsicherheiten behaftet sind und im Einzelfall auch deutlich andere Ergebnisse liefern könnten. Es gibt nur wenige Daten zur typischen Sendeleistung der verschiedenen Geräte und zur Distanz zwischen dem Körper und dem Gerät in typischen Nutzungs situationen. Beides sind sehr wichtige Parameter, die individuell im Rahmen der technischen Entwicklung stark variieren können. In der Geronimo-Studie72 wurde das Dosisberechnungsmodell weiter verfeinert und aktualisiert. Es ist aber noch nicht öffentlich zugänglich. Es gilt auch zu beachten, dass die Absorption der HF-NIS keine Aussage über mögliche nicht-thermische Effekte zulässt.

5.7 Einflussfaktoren auf die Exposition und Möglichkeiten der Minimierung

5.7.1 Faktoren, welche die Exposition durch Basisstationen beeinflussen

Die Exposition in der Umgebung einer Basisstation hängt grundsätzlich von folgenden Faktoren ab:

- Äquivalente Sendeleistung der Antenne
- Räumliches Abstrahlungsmuster der Antenne (Senderichtung/Antennendiagramm)
- Abstand zur Antenne
- Dämpfung durch Mauerwerk und Dächer (Gebäudedämpfung); Dämpfung durch Atmosphäre
- Menge der übermittelten Daten (Datenverkehr)

Sind diese Faktoren für eine konkrete Situation bekannt, lässt sich die durch eine Mobilfunkantenne an einem bestimmten Ort in der Umgebung verursachte Immission, ausgedrückt als elektrische Feldstärke in Volt pro Meter (V/m), berechnen. Für die Berechnung der Immissionen verwendet man die äquivalente Strahlungsleistung ERP (effective radiated power or equivalent radiated power) in Watt (W). Die ERP beschreibt die in Hauptstrahlrichtung wirksame Sendeleistung, wobei die fokussierende Wirkung der Sendeantennen berücksichtigt wird. Sie ist nicht zu verwechseln mit der zugeführten Sendeleistung, welche bei Antennen mit Richtwirkung wesentlich niedriger ist als die ERP.

Je grosser die äquivalente Sendeleistung einer Anlage, desto grösser ist auch die an einem bestimmten Ort in der Umgebung erzeugte Exposition. Wird diese als elektrische Feldstärke ausgedrückt, ist die Beziehung zwischen Sendeleistung und Exposition jedoch nicht linear: Wird die Sendeleistung verdoppelt, erhöht sich die elektrische Feldstärke nur um den Faktor $\sqrt{2}$, d. h. um 41 Prozent; wird die Leistung verdreifacht, erhöht sich die elektrische Feldstärke um den Faktor $\sqrt[3]{3}$, d. h. um 73 Prozent.

Um eine gezielte Abdeckung zu erreichen, verwendet man im Mobilfunk spezielle Antennen mit einer horizontalen und vertikalen Richtcharakteristik. Diese Antennen senden nicht gleichförmig in alle Richtungen, sondern bündeln die Funksignale und lenken diese kegelförmig in die gewünschte Hauptstrahlrichtung. Ausserhalb des Kegels ist die Strahlung zwar noch vorhanden, aber stark reduziert. Allerdings treten neben dem Hauptstrahl sogenannte «Nebenkeulen» auf,

5.7.2 Minimierung der Immissionen durch Basisstationen

Eine Minimierung der Immissionen durch Basisstationen ist mittels Einflussnahme auf verschiedene Faktoren möglich:

- Sendeleistung: Die Sendeleistung einer Antenne muss so stark sein, dass die zu übermittelnden Funksignale die Endgeräte auch am Rand der Zelle noch erreichen. Sie darf aber dort nicht zu intensiv sein, weil sonst die Signale in anderen Zellen gestört würden. Eine Basisstation benötigt umso weniger Sendeleistung, je kleiner die abzudeckende Funkzelle ist, da sich die zu bedienenden Endgeräte näher an der Basisstation befinden als in einer sehr grossen Funkzelle. Allerdings braucht ein Signal mit höherer Bandbreite, etwa 100 MHz im 3,5-GHz-Band, entsprechend mehr Leistung, auch wenn nur eine kleine Zelle versorgt wird.

- Als Kriterium für die Mobilfunkversorgung wird oft nur die Abdeckungsfeldstärke herangezogen, wobei Abdeckung bedeutet, dass eine Mobilfunkverbindung grundsätzlich möglich ist. Das Kriterium der Kapazität (und damit das verfügbare Datenvolumen, das sich alle gleichzeitig aktiven Nutzenden in einer Funkzelle teilen müssen) wird oft ausser Acht gelassen, spielt für die Mobilfunkplanung jedoch eine entscheidende Rolle. Insbesondere die hohen Datenraten, die mit 5G erzielt werden sollen, sind nur mit einer Erhöhung der eingesetzten Bandbreite zu erreichen.

- Kapazität: Bei gleichbleibender Kapazität (übertragbare Datenmenge) benötigt ein dichteres Netz mit leistungsschwachen Sendern, aber gleicher Funktechnologie und Bandbreite insgesamt weniger Sendeleistung und erzeugt weniger Immissionen als ein weitmaschiges Netz mit starken Sendern.73 Das sagt aber noch nichts über die tatsächliche Exposition aus, da diese auch davon abhängt, in welcher Distanz zu den Sendern sich eine Person aufhält.

- Bei gleichbleibender mittlerer Immission hat ein dichteres Netz mit kleineren Makrozellen (mit leistungsschwachen Sendern, aber identischer Funktechnologie und Bandbreite) insgesamt eine höhere Kapazität als ein weniger dichtes Netz mit starken Antennen.

- Abstand zur (Kleinzellen-)Antenne: In unmittelbarer Nähe von Kleinzellenantennen (d. h. zu Antennen mit einer Sendeleistung unter 6 Watt ERP) kann die Immission ähnlich gross sein wie in der Nachbarschaft einer Makrozellenanlage.74 Es ist deshalb von Bedeutung, dass bei Kleinzellennetzen – insbesondere auch bei Indoor-Anlagen – die Antennen sorgfältig dort platziert werden, wo sich keine Menschen über längere Zeit in unmittelbarer Nähe aufhalten. Dies kann zur Folge haben, dass Kleinzellenantennen aus Netz-Sicht nicht optimal platziert werden können. In diesem Fall können sie die Versorgungsziele (Abdeckung, Kapazität etc.) nicht voll erfüllen und es sind zusätzliche Anlagen notwendig, um die Lücken zu füllen.
Kleinzelten können netzplanerisch jedoch nur dann effizient eingesetzt werden, wenn sie sich dort befinden, wo auch die Nutzer sind, denn die Verbindung und die Datenrate des Endgeräts ist umso besser, je kürzer die Funkstrecke ist und je weniger dämpfende Hindernisse sich darin befinden.

Datenverkehr (Aspekt Kontrollsignal): Zusätzlich liese sich ein Teil der Immissionen reduzieren, wenn anstelle von mehreren unabhängigen Mobilfunknetzen nur noch ein Einheitsnetz betrieben würde. Insbesondere müsste die Signalisierung nur noch einmal pro Fläche erfolgen, statt für jedes Netz unabhängig. Im Falle der neuen 5G-Technologie sind diese Kontrollsignale schlanker und flexibler geworden. 5G wird daher wesentlich weniger Kontrollsignale aussenden als der Vorgängerstandard LTE.

Neue Antennentechnologien: Heutige Antennen strahlen die für einen Nutzer zu übertragenden Signale auf die gesamte Funkzelle ab. Neue Technologien wie adaptive Antennen («smart antennas», «beam forming» etc.) erlauben es hingegen, die Signale nur noch in diejenigen Richtungen zu senden, wo diese angefordert werden. Richtungen, in denen keine Endgeräte sind, werden damit weniger exponiert. Insgesamt ist zu erwarten, dass die über die Fläche gemittelte Exposition durch adaptive Antennen (bei gleicher Datenmenge) geringer ausfällt als durch herkömmliche statische Antennen.

5.7.3 Faktoren, welche die Exposition durch Endgeräte beeinflussen

Nur ein Teil der in Kapitel 5.5.1 erwähnten Faktoren, welche die Exposition durch ein Endgerät bestimmen, weisen einen Zusammenhang mit der Netzstruktur auf. Bezuglich Netzstruktur keine Rolle spielen der maximale SAR-Wert und die Distanz des Geräts zum Körper, weshalb diese Faktoren bei den nachfolgenden Betrachtungen nicht mehr einbezogen werden.

Im Hinblick auf ein Netz, das zur Minimierung der Immissionen durch Endgeräte beiträgt, sind die Mobilfunktechnologie und die Verbindungsqualität wesentlich:

- Mobilfunktechnologie: In Kapitel 5.5.1 ist dargelegt, dass UMTS- und LTE-Mobiltelefone ihre Leistung sehr viel effizienter regeln als GSM-Geräte und daher auch zu weniger Exposition führen.

- Für die Nutzung von 5G im 3,5-GHz-Bereich kann davon ausgegangen werden, dass ein ähnliches Verhalten wie bei LTE zu beobachten sein wird.

5.7.4 Minimierung der Immissionen durch Endgeräte

Um den Akku zu schonen, ist ein Mobiltelefon bestrebt, mit möglichst tiefer Leistung zu senden. Zu diesem Zweck wird die Sendeleistung der Endgeräte von der Basisstation so geregelt, dass sie deren Signale mit genügender Qualität empfangen kann. Wenn die Basisstation das Endgerät auch dann noch mit genügender Qualität empfangen soll, wenn dieses mit minimaler Leistung sendet, sollte das Endgerät also möglichst nahe bei der Basisstation sein (kurze Funkstrecke), und in der Funkstrecke sollten sich möglichst keine dämpfenden Hindernisse befinden (z. B. Gebäudehüllen oder Fahrzeugkarosserien).

Kurze Funkstrecken mit kleiner Dämpfung haben gegenüber langen Funkstrecken mit grösserer Dämpfung auch den Vorteil höherer übertragbarer Datenmengen. Dadurch wird auch die Sendedauer des Endgeräts verkürzt, was wiederum die Exposition verkleinert.
Weil die Empfängerempfindlichkeit der Basisstationen einen Einfluss auf die Sendeleistung des Endgeräts hat, könnte eine weitere Effizienzsteigerung (und damit eine zusätzliche Expositionsminderung) mit qualitativ hochwertiger Elektronik in den Endgeräten und den Basisstationen erreicht werden.

5.7.5 Möglichkeiten der Minimierung der Exposition der Bevölkerung beim Netzausbau

Aus den vorangegangenen Überlegungen ergeben sich auch auf der Ebene der Netzstruktur und des Netzausbaus Möglichkeiten zur Minimierung der Exposition der Bevölkerung, welche von Basistationen und Endgeräten ausgeht.

Wie oben hergeleitet, benötigen sowohl Endgeräte als auch Basistationen umso weniger Sendeleistung, je kürzer die Funkstrecke ist und je weniger dämpfende Hindernisse sich auf dieser Funkstrecke befinden. Die Immissionen durch Mobilfunk können daher am besten minimiert werden, wenn die Signale über Glasfasernetze (oder bei rund zwei Drittel der Schweizer Haushalte und Unternehmen auch über Richtfunkstrecken) möglichst nahe an den Endkunden geführt werden und die Reststrecke durch die Luft möglichst kurz und hindernisfrei ist.

Für eine Erhöhung der Kapazität müsste die Leistung der Zellen erhöht werden oder nochmals eine weitere Verdichtung der Zellen vorgenommen werden. Aus funktotechnischer Sicht ist zu beachten, dass durch eine hohe Verdichtung grössere Interferenzprobleme auftreten können, die einen negativen Einfluss auf die Kapazität der Netze haben. Dasselbe gilt auch für Leistungserhöhungen bei Makrozellen.

Für die Trennung von Indoor- und Outdoor-Versorgung können Innenräume mit Innenantennen (Femto-, Picozellen, WLAN, Repeater) versorgt werden. Unter Umständen braucht es in jedem grösseren Raum eines Gebäudes eine entsprechende Antenne. Aufgrund der typischen Nutzungsdauer ist davon auszugehen, dass ein Grossteil der mobil zu übertragenden Daten quasistationär im Innern von Gebäuden anfängt, was eine Indoor-Versorgung von Innen noch sachgerechter erscheinen lässt.

In der Schweiz gibt es etwa 2,5 Millionen Gebäude. Wenn die Mehrheit der Gebäude mit dedizierten Indoor-Anlagen versorgt werden müsste, würden sich für die Installation solcher Antennen (zum Teil in mehreren Räumen eines Gebäudes) insgesamt sehr hohe Kosten ergeben.

Insbesondere bei Indoor-Sendern macht es Sinn, diese überlegt zu platzieren (gute Abdeckung der Räume, Mindestabstand zu Personen). Denn auch leistungsschwache Sender können in geringen Distanzen die Exposition erhöhen.

Falls Gebäudefassaden oder Fahrzeugkarosserien zu überwinden sind, kann die Exposition reduziert werden, wenn die genannten Hüllen für die Mobilfunkstrahlung möglichst durchlässig sind. In Eisenbahnwagen werden hierfür seit kurzem Wärmeisolationssenster eingesetzt, deren Metallbeschichtung in geeigneter Weise perforiert ist und die Mobilfunksignale damit weniger stark abschwächt. Für Gebäude ist dieser Ansatz weniger geeignet, da andere Gebäudestrukturen meist ohnehin weniger dämpfen als die beschichteten Gläser. Eine Laserung und damit bessere Durchlässigkeit der Scheiben bringt daher nur bei Metalfassaden oder Eisenbetonmauern mehr Signal und auch nur im ersten Raum hinter dem Fenster.
Im Weiteren können die Möglichkeiten der neuen Technologien genutzt werden, um die Immissionen zu minimieren, wie adaptive Antennen. Zudem benötigen effizientere Funktechnologien weniger Energie pro übertragener Datenmenge. Deshalb sollten veraltete, ineffiziente Funkdienste wie 2G möglichst rasch durch moderne ersetzt werden.

5.8 Modellierung der Exposition durch 5G-Basisstationen und -Endgeräte

5.8.1 Vorgehen

Die vorangegangenen grundsätzlichen Überlegungen werden durch die Resultate einer Studie ergänzt, welche die mit der ETH Zürich assoziierte IT’IS Foundation im Auftrag des BAFU im Rahmen der Erarbeitung des vorliegenden Berichtes durchgeführt hat. Von dieser Untersuchung existiert ein detaillierter Bericht in englischer Sprache. Nachfolgend werden einige wesentliche Punkte der Studie zusammengefasst.

Das Ziel der Studie war es, die Gesamtexposition der Bevölkerung unter 5G für verschiedene Netzstrukturen und Nutzungsszenarien zu modellieren. Durch die Ermittlung verschiedener Einflussfaktoren auf die Gesamtexposition können gezielte Massnahmen abgeleitet werden, um die Exposition der Bevölkerung durch Mobilfunk zu minimieren.

Bei der hier berechneten Gesamtexposition handelt es sich um die kombinierte Exposition durch die Mobilfunk-Basisstationen, das eigene Endgerät und die Endgeräte umstehender Nutzer. Es wurde jeweils der maximal am Körper auftretende SAR-Wert berechnet und nicht wie in Kapitel 5.6 die kumulative Ganzkörperdosis pro 24 Stunden. Der maximale SAR-Wert ist aussagekräftig für Auswirkungen, welche erst oberhalb eines Schwellenwertes stattfinden (vgl. Kap. 5.6.1).

5.8.2 Resultate

Im ersten Teil der Studie wurde anhand verschiedener Kopfmodelle die Exposition des Gehirns durch das eigene Mobiltelefon für Frequenzen zwischen 700 MHz und 3,6 GHz untersucht. Es zeigte sich:

- Je höher die Frequenz, desto weniger tief dringen die Felder in den Kopf ein.
- Bei Frequenzen von 3,6 GHz wird das Gehirn rund 6-mal weniger exponiert als bei Frequenzen von unter 1 GHz und rund 2-mal weniger als bei Frequenzen um 1,8 bis 2 GHz.
- Allerdings kann die Exposition von Geweben nahe bei exponierten Körperoberflächen wie Haut, Augen etc. bei Frequenzen um 3,6 GHz leicht erhöht sein.
- Der lokale Spitzenwert an der äusseren Oberfläche der grauen Substanz des Zentralnervensystems bleibt über alle Frequenzen konstant.

Im zweiten Teil der Studie wurde der Einfluss der Netzstruktur und des Nutzungsverhaltens auf die Gesamtexposition der Bevölkerung durch Mobilfunk untersucht. In über 200 Expositionsszenarien wurden die Auswirkungen unterschiedlicher Netzwerkstrukturen (durch eine Veränderung der Zellgrößen und zusätzlicher Innenraumversorgung mittels Kleinzellen), des eigenen Nutzungsverhaltens und von Nutzern in der nahen Umgebung auf die Gesamtexposition berechnet. Dabei zeigte sich:

- Bei allen Mobilfunknutzern ist die Exposition durch das eigene Endgerät dominierend (wie bereits mit den heutigen Mobilfunkfrequenzen).
- Im Vergleich zu den Nichtnutzern ist die Exposition:
 - 4- bis 10mal höher bei Wenig-Nutzern (100 MByte Datenupload pro Tag);
 - 20- bis 300-mal höher bei moderaten Nutzern (1 GByte Datenupload pro Tag);
 - 300- bis 10 000-mal höher bei Vielnutzern (10 GByte Datenupload pro Tag).
- Im Durchschnitt ist die Exposition bei Nichtnutzern um einen Faktor 1000 tiefer als bei Nutzern.
- Die maximale Exposition für einen Nichtnutzer wird nicht durch eine Basisstation, sondern durch das Endgerät eines sich nahe befindenden Nutzers bestimmt. Der Einfluss von umstehenden Nutzern ist im urbanen Szenario viermal höher als jener der Basisstation. Für die kumulative Ganzkörperdosis pro 24 Stunden sind aber die Immissionen der Basisstationen dominierend.
Die Reduktion des Zellenradius führt zu einer Verringerung der Gesamtexposition der Nutzer um einen Faktor 2 bis 10. Die Nichtnutzer erfahren jedoch eine leichte Erhöhung um den Faktor 1,6 auf tiefem Expositionsniveau.

Die zusätzliche Versorgung des Innenraums durch Kleinzellen führt für alle Nutzer zu einer Reduktion der Exposition um den Faktor 10. Die Vielnutzer erfahren sogar eine Reduktion um den Faktor 600, wenn die Innenraumbdeckung rein durch Kleinzellen erfolgt.

Bei Nichtnutzern erhöhen zusätzliche Kleinzellen die Exposition um den Faktor 2 bis 10. Diese bleibt jedoch um den Faktor 10 bis 1000 kleiner als die Exposition der Nutzer.

Die Gesamtexposition wird durch die höhere spektrale Effizienz der neuen Technologie bis zu einem Faktor 3 vermindert.

Die Ergebnisse der Studie sind aufgrund der zur Verfügung gestandenen Netzdienstleistungen und der getroffenen Annahmen begrenzt. Nicht in die Studie miteinbezogen wurden folgende Aspekte:

- Der Effekt von adaptiven Antennen bei Basisstationen (Massive MIMO) und von Multi-User-MIMO-Systemen bei den Mobilfunkgeräten;
- alternative Datenübertragungsstrecken (z. B. Nutzung WLAN);
- Millimeterwellen (da diese in naher Zukunft in der Schweiz nicht für den Mobilfunk eingesetzt werden);
- Exposition durch andere Quellen wie WLAN, Rundfunk oder andere Funkanwendungen;
- die Reduktion der Exposition der Nichtnutzer durch eine sorgfältige Platzierung der Kleinzellenantennen im Raum oder deren Abschaltung bei Nichtgebrauch;
- modellierte Werte für einen, und nicht für drei Netzbetreiber;
- die Auswirkungen nicht optimaler Funkversorgung in Innenräumen.

Im Hinblick auf die Interpretation der Ergebnisse ist weiter anzumerken:

- Es handelt sich um eine Worst-Case-Betrachtung, die im Alltag selten vorkommen dürfte (95. Perzentil der Maximalbelastungen der modellierten Quellen zur selben Zeit am selben Ort).
- Das Expositionsmaß lässt keine Aussagen zu Gesundheitsauswirkungen zu, weil nicht unterschieden wird, wo die Exposition am Körper stattfindet (Kopf, Torso, Extremitäten).

6 Gesundheitliche Auswirkungen

6.1 Vorbemerkungen

6.2 Ziele und Vorgehen

Tabelle 15: Das vierstufige Bewertungsschema der EFHRAN

<table>
<thead>
<tr>
<th>Klassifizierung</th>
<th>Notwendige Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausreichende Evidenz</td>
<td>· Es wurde ein positiver Zusammenhang zwischen Exposition und Effekt beobachtet.</td>
</tr>
<tr>
<td></td>
<td>· Der Effekt wurde in mehreren Studien von unabhängigen Forschern oder mit</td>
</tr>
<tr>
<td></td>
<td>verschiedene Untersuchungsprotokollen bestätigt, und es besteht eine übereinstimmende</td>
</tr>
<tr>
<td></td>
<td>Expositions-Wirkungsbeziehung.</td>
</tr>
<tr>
<td></td>
<td>· Andere Einflussfaktoren (Confounder) können mit zufriedenstellender Sicherheit</td>
</tr>
<tr>
<td></td>
<td>ausgeschlossen werden.</td>
</tr>
<tr>
<td>Begrenzte Evidenz</td>
<td>· Die Evidenz für den Effekt beruht nur auf wenigen Studien, oder es bestehen ungeklärte Fragen hinsichtlich Studiendesign, Durchführung oder Interpretation der Studien.</td>
</tr>
<tr>
<td></td>
<td>· Andere Einflussfaktoren können in den vorliegenden Studien nicht mit zufriedenstellender Sicherheit ausgeschlossen werden.</td>
</tr>
<tr>
<td>Unzureichende Evidenz</td>
<td>· Die Qualität, Übereinstimmung oder statistische Aussagekraft der vorliegenden Studien lässt keine eindeutigen Schlussfolgerungen zu.</td>
</tr>
<tr>
<td>Evidenz für Abwesenheit</td>
<td>· In mehreren Studien wurden von unabhängigen Forschern mit unterschiedlichen Untersuchungsprotokollen an mindestens zwei Spezies oder zwei Zelltypen und bezogen auf einen ausreichenden Bereich von Feldintensitäten keine Effekte beobachtet.</td>
</tr>
</tbody>
</table>

6.3 Methodische Aspekte

Finanzierung gesichert ist. Angesichts dieses Aufwands ist demnach klar und zu betonen, dass es unmöglich ist, im Rahmen der vorliegenden Berichterstattung einen solchen systematischen Ansatz zu verfolgen.

Der Stand des Wissens wurde auf zwei Arten zusammengetragen:

- durch eine Zusammenstellung der Aussagen wichtiger internationaler Expertengremien über gesundheitliche Effekte (insgesamt sieben Fachberichte);

6.3.1 Originalstudien

- relevant für die Gesundheit oder das Wohlbefinden von Menschen;
- informativ für die Herleitung von Expositions-Wirkungsbeziehungen von hochfrequenter NIS in der Umwelt;
- wichtig für das Verständnis von biologischen Wirkungsmechanismen;
- hohe wissenschaftliche Qualität.

6.3.2 Internationale Expertenberichte

Es wurden die Risikoeinschätzungen zu HF-NIS von sieben Expertengruppierungen berücksichtigt. Die Berichte dieser Gruppierungen wurden durch folgende Institutionen veröffentlicht: SCENIHR (Expertenkommission der Europäischen Union, veröffentlicht 2015)\(^84\), SSM (Schweden, 2018)\(^85\), ARPansa (Australien, 2014)\(^86\), Anses (Frankreich, zwei Berichte 2016 und 2018)\(^87\), ICNIRP (international, 2018)\(^88\), TAB (Deutschland, 2017)\(^89\).

6.4 Zusammenfassung des Kenntnisstandes 2014

Als Ausgangslage für diesen Bericht wurde die gesundheitliche Bewertung im Bericht Hug et al. (2014) verwendet, die im Folgenden dargestellt wird (s. auch Tabelle 16):

- **Auswirkungen auf das Verhalten von Kindern und Jugendlichen: unzureichende Evidenz.** Es liegen vereinzelte Hinweise für Auswirkungen der prä- oder postnatalen Hochfrequenzexposition auf das Verhalten vor. Es handelt sich lediglich um Einzelbefunde, weil jede der Studien eine andere Exposition untersucht hat (Handybenutzung der Kinder, der schwangeren Mütter oder ortsfeste Sendeanlagen). In einer qualitativ guten Studie wurden die Effekte der Exposition durch ortsfeste Sendeanlagen untersucht. Für Kinder ergab sich kein Zusammenhang zwischen Expositions niveau und Verhaltensauffälligkeiten. Dagegen hatten Jugendliche, die zum obersten Expositionsviertel gehörten, statistisch signifikant häufiger Auffälligkeiten bezüglich Benehmen und Hyperaktivität als weniger stark Exponierte, wobei andere Einflussfaktoren auf das Resultat im Einzelfall nicht ausgeschlossen werden können.

- **Auswirkungen auf die Fruchtbarkeit: begrenzte Evidenz.** Studien haben negative Auswirkungen auf verschiedene Parameter der Qualität von Spermien festgestellt, die in vitro einer Hochfrequenzstrahlung ausgesetzt wurden.
Auch aus Tierexperimenten gibt es Hinweise auf Veränderungen von Spermien nach Mobilfunkexpositionen. In vivo durchgeführte Humanstudien, die ebenfalls relativ einheitlich negative Effekte auf die Spermienqualität zeigten, wurden aufgrund methodischer Limitierungen als wenig aussagekräftig beurteilt.

- **Blut-Hirn-Schranke: unzureichende Evidenz.** In mehreren Tierexperimenten, die aus verschiedenen Gründen allerdings wenig aussagekräftig sind, wurde eine verstärkte Durchlässigkeit der Blut-Hirn-Schranke durch Hochfrequenzbelastung beobachtet. Die zahlreichen Replikationsversuche ergaben überwiegend keine Effekte bzw. eine sehr schwache Evidenz.

- **Programmierter Zelltod (Apoptose): begrenzte Evidenz.** In mehreren neueren Studien an verschiedenen menschlichen Zelllinien und Säugetierzellen wurden erhöhte Zelltod-Raten beobachtet.

- **Reaktive Sauerstoffspezies (oxidativer Stress): begrenzte Evidenz.** In einigen Zellstudien wurde beobachtet, dass Hochfrequenzstrahlung die Bildung von reaktiven Sauerstoffspezies (ROS) verstärkte, die wiederum zu Zell- oder Erbgutschädigung führen können.
• **Gen- und Proteinexpression: begrenzte Evidenz.** Zur Expression von Hitzeschockproteinen bei Hochfrequenzexposition liegen sowohl positive wie negative Studien vor. Auch für andere Proteine ist die Datenlage noch unklar. Da sich viele Arbeiten auf das Beschreiben von Unterschieden beschränken, ohne eine nachträgliche funktionelle Validierung, bleibt die Bedeutung von beobachteten Veränderungen unklar.

6.5 Internationale Expertenberichte seit 2014

Tabelle 16: Überblick über die Evidenzlage von Expertenberichten, welche seit 2014 publiziert wurden

<table>
<thead>
<tr>
<th>Endpunkt</th>
<th>Hug et al., 2014</th>
<th>SCENIHR</th>
<th>SSM</th>
<th>ARPANSA</th>
<th>Anses-Kids</th>
<th>ICNIRP</th>
<th>TAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumoren im Kopfbereich (Handy)</td>
<td>B</td>
<td>B</td>
<td>U</td>
<td>B</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Krebs (Anlagen)</td>
<td>U</td>
<td>N</td>
<td>--</td>
<td>U</td>
<td>--</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Verhalten bei Kindern und Jugendlichen</td>
<td>U</td>
<td>U</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>U</td>
</tr>
<tr>
<td>Befinden und Symptome (chronisch)</td>
<td>U</td>
<td>N</td>
<td>N</td>
<td>O</td>
<td>U</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>Befinden und Symptome (akut)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>O</td>
<td>U</td>
<td>U</td>
<td>N</td>
</tr>
<tr>
<td>Fertilität</td>
<td>B</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Hirnströme</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>--</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Durchblutung und Stoffwechsel Gehirn</td>
<td>B</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>U</td>
<td>--</td>
</tr>
<tr>
<td>Ko-Karzinogenese im Tierversuch</td>
<td>B</td>
<td>O</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Blut-Hirn-Schranke</td>
<td>U</td>
<td>U</td>
<td>O</td>
<td>--</td>
<td>--</td>
<td>?</td>
<td>N</td>
</tr>
<tr>
<td>DNS-Schädigung (direkt)</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>DNS-Schädigung (Ko-Exposition)</td>
<td>B</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Zellproliferation</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Apoptose</td>
<td>B</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Oxidativer Stress</td>
<td>B</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Gen- und Proteinexpression</td>
<td>B</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Entwicklung, Schwangerschaft</td>
<td>--</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>O</td>
<td>O</td>
<td>U</td>
</tr>
<tr>
<td>Kognition</td>
<td>--</td>
<td>U</td>
<td>U</td>
<td>--</td>
<td>B</td>
<td>B</td>
<td>U</td>
</tr>
</tbody>
</table>

Die Evidenzkategorien sind mit einem Farbschlüssel und Buchstaben wie folgt codiert:

<table>
<thead>
<tr>
<th>Hug / TAB</th>
<th>Andere Berichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ausreichend</td>
</tr>
<tr>
<td>B</td>
<td>Begrenzt</td>
</tr>
<tr>
<td>U</td>
<td>Unzureichend</td>
</tr>
<tr>
<td>N</td>
<td>Abwesenheit</td>
</tr>
<tr>
<td>--</td>
<td>Keine Aussage</td>
</tr>
</tbody>
</table>

6.6 Evidenzbewertung anhand neuer Studien

Die Evaluation der wissenschaftlichen Literatur seit 2014 ergab unter Berücksichtigung der publizierten Expertenberichte die folgende Evidenzbewertung für verschiedene mögliche Effekte von NIS:

- Im Vergleich zum Kenntnisstand im Jahr 2014 sprechen nach Meinung einiger Mitglieder der Arbeitsgruppe die neuen Tierstudien eher für eine Zunahme der Evidenz, nach Meinung anderer sind die Ergebnisse zu wenig robust für eine solche Aussage. Die konstanten Erkrankungsraten in mehreren Krebsregistern deuten eher auf eine Abnahme der Evidenz hin. Insgesamt wird deshalb die Evidenz weiterhin als begrenzt beurteilt. Das heisst, dass ungelöste Fragen hinsichtlich des Studiendesigns, der Durchführung oder der Interpretation der Studien bestehen, und andere Einflussfaktoren nicht mit zufriedenstellender Sicherheit ausgeschlossen werden können.

• Ko-Karzinogenese im Tierversuch: Eine 2015 publizierte Studie konnte frühere Resultate bestätigen, wonach die gleichzeitige Exposition von HF-NIS mit einer erwiesenermassen krebsrergernden Substanz zu schnellerem Tu-

moranwachstum führt als mit der krebsrergernden Substanz allein. Die Tatsache, dass es gelungen ist, diese Tumor-

promotion zu replizieren, könnte als Argument für eine Heraufstufung der Evidenz von begrenzt zu ausreichend

verwendet werden. Jedoch sprechen die fehlende Expositions-Wirkungsbeziehung und methodische Limitierun-

gen in der Studie gegen eine solche Heraufstufung. Experimente zur Ko-Karzinogenese sind prinzipiell relevant,

da auch Menschen in ihrer Alltagsumgebung häufig mehreren potenziell schädlichen Belastungen ausgesetzt sind.

Eine Kohortenstudie zur Überlebenswahrscheinlichkeit von 866 Gliom-Patienten in Abhängigkeit von ihrem Mo-
bilefongebrauch fand jedoch keine Hinweise auf eine tumorpromovierende Wirkung. Insgesamt wird deshalb

die Evidenz als begrenzt gewertet.

• Befinden und Symptome durch Alltagsexposition wie Nutzung von Mobiltelefonen und Sendeanlagen: Eine Reihe von

neuen Studien aus Holland und der Schweiz fand keinen Zusammenhang zwischen dem Auftreten von Sympto-

menen und der modellierten HF-NIS am Wohnort. Das deutet darauf hin, dass es keinen solchen Zusammenhang

gibt (Evidenz für Abwesenheit). In diesen Studien (wie auch in der Realität) ist der Anteil Personen, die im Durch-
schnitt höheren Expositionen ausgesetzt sind (z. B. >0,5 V/m) sehr gering, und sie sind deshalb nicht genügend

aussagekräftig, um Auswirkungen bei Expositionen im Bereich des Anlagegrenzwertes und darüber zu evaluieren.

Diesbezüglich wird die Evidenz als unzureichend kassiert. Einige Mitglieder der Arbeitsgruppe waren der Mei-
nung, dass aufgrund der Erfahrungen aus der Praxis mit Patienten, welche Beschwerden plausibel auf hohe NIS-

Expositionen zurückführen, ein Zusammenhang nicht ausgeschlossen werden könne, auch wenn ein Beweis für

solche Wirkungen im Einzelfall nicht geleistet werden kann.

• Befinden und Symptome durch kurzfristige Expositionen: Seit 2014 sind kaum mehr Provokationsstudien zu akuten

Effekten von HF-NIS auf das Befinden durchgeführt worden. Schon damals gab es Evidenz, dass kein diesbezügli-
cher Zusammenhang besteht.

• Auswirkungen auf das Verhalten von Kindern und Jugendlichen durch pränatale Exposition oder Mobiltelefonnutzung

und Exposition bei ortsfesten Sendeanlagen: Es gibt zwar einige neue Studien zu diesem Thema, jedoch zeigen ver-
einzelt beobachtete Assoziationen kein konsistentes Bild, und eine longitudinale Studie deutet eher darauf hin,

dass Jugendliche mit Verhaltensproblemen häufiger Mobiltelefone nutzen, als dass Mobiltelefonnutzung zu Ver-

haltensproblemen führt (umgekehrte Kausalität). Die Evidenz wird daher als unzureichend beurteilt.

• Kognition bei intensiver Mobiltelefonnutzung: Eine 2018 veröffentlichte Studie hat einen langfristigen Einfluss von

HF-NIS auf das Kurzzeitgedächtnis beobachtet, und in einer experimentellen Studie konnte gezeigt werden, dass

nach Nächten mit HF-NIS-Exposition die schlafabhängige Verbesserung in einem kognitiven Test reduziert war.

Falls solche kognitiven Effekte real wären und längerfristig nicht kompensiert würden, hätte das relevante Auswir-

kungen auf die Leistungsfähigkeit der Gesellschaft. Mehrere andere experimentelle Kurzzeitstudien und einige

andere epidemiologische Studien ergeben insgesamt aber kein konsistentes Bild, sodass die Evidenz als unzu-

reichend eingeschätzt wird. Dieser Effekt wurde 2014 nicht evaluiert.

• Entwicklung des Fötus bei intensiver mütterlicher Mobiltelefonnutzung während der Schwangerschaft: Eine erste

große prospektive Kohortenstudie aus Norwegen findet keinen Hinweis für einen diesbezüglichen Zusammen-

Schwangerschaftswoche machen, weshalb die Faktenlage noch unklar ist. Die Evidenz wird deshalb als unzu-

reichend eingeschätzt.

• Spermienqualität: Im Bericht von Hug et al. (2014) wurde aufgrund von damals neuen Studien zum Einfluss der
täglichen Mobiltelefonnutzung auf die Spermienqualität die Evidenz als begrenzt eingestuft. Seither konnten

diese Beobachtungen nicht mit qualitativ verbesserten Untersuchungen beim Menschen gestützt werden. Es gibt

jedoch auch Tierstudien, die experimentell einen Hinweis auf negative Effekte bei relativ geringen Expositionen

finden (150 mW/kg). Nicht im Detail evaluiert wurden In-vitro-Studien zur Thematik. Aufgrund der Humanstudien

wird die Evidenz als unzureichend eingeschätzt. Da potenzielle Einflüsse auf die Fortpflanzung relevant sind, sollte

dieser Thematik noch verstärkt Beachtung geschenkt werden.
- **Hirnströme durch Mobiltelefonexposition:** Wie 2014 wird die Evidenz als ausreichend eingeschätzt. Die wenigen neuen Studien bestätigen die bisherigen Resultate, wobei es gewisse Unterschiede zwischen den Studienresultaten gibt.

Zusammenfassend kommt die Arbeitsgruppe damit zu den nachstehenden Schlussfolgerungen:

- Bisher sind keine konsistenten Gesundheitsauswirkungen unterhalb der ICNIRP-Richtwerte (bzw. der Immissionsgrenzwerte der NISV) und mit den heute verwendeten Mobilfunkfrequenzen nachgewiesen worden.
- Evidenz für physiologische Effekte beim Menschen gibt es bei Exposition des Gehirns im Bereich des ICNIRP-Richtwertes für lokale Absorption (v. a. Hirnströme). Diese experimentellen Studien fanden teilweise auch unterschiedliche Effekte in Abhängigkeit der Modulation, was darauf hindeutet, dass neben der Signalstärke auch die Signalform der Exposition eine Rolle spielen könnte, was nicht mit dem thermischen Wirkmodell erklärbar ist. Inwiefern die Signalcharakteristik (z. B. Modulation) eine Rolle spielt, ist aber noch zu wenig systematisch evaluiert worden.
- Es gibt kaum Studien an Menschen, bei denen der ganze Körper im Bereich des Ganzkörpergrenzwertes exponiert ist. Im Alltag kommen solche Expositionen, obwohl prinzipiell zulässig, praktisch nicht vor, was beobachtende Studien schwierig macht. In epidemiologischen Studien sind die am stärksten exponierten Personen deutlich weniger stark exponiert (ca. 0,2–1 V/m). Bei diesen Expositionen findet man keine Hinweise auf Gesundheitsauswirkungen.
- Es sind sehr viele In-vitro- und In-vivo-Studien gemacht worden. Diese finden häufig biologische Effekte (z. B. ROS), aber die Ergebnisse sind nicht einheitlich. So findet sich zum Beispiel kein konsistentes Muster in Bezug auf Expositions-Wirkungsbeziehungen oder in Bezug auf die Frage, welche Zellen besonders sensiv wären.
- Es gibt bereits einige In-vitro- und In-vivo-Studien für Expositionen im Bereich von 30 bis 65 GHz. Die Resultate sind jedoch zu wenig robust für eine Evidenzbeurteilung.
- Aufgrund der offenen Fragen wird in Kapitel 10.4.1 beschrieben, für welche potenziellen Effekte weitere Forschung angezeigt ist.
Tabelle 17: Überblick über die Evidenzlage gemäss Einschätzung der Arbeitsgruppe (Evidenzeinschätzung 2019) im Vergleich zur Evidenzeinschätzung im Bericht Hug et al. (2014)

<table>
<thead>
<tr>
<th>Endpunkt</th>
<th>Exposition</th>
<th>Evidenzeinschätzung 2014</th>
<th>Evidenzeinschätzung 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumoren (v. a. Glioblastome und Neurilemmome)</td>
<td>Langfristige oder intensive Mobiltelefonnutzung</td>
<td>begrenzt</td>
<td>begrenzt</td>
</tr>
<tr>
<td></td>
<td>Sendeanlagen</td>
<td>unzureichend</td>
<td>unzureichend</td>
</tr>
<tr>
<td>Ko-Karzinogenese im Tierversuch</td>
<td>2014: ≥0,9 W/kg</td>
<td>begrenzt</td>
<td>begrenzt</td>
</tr>
<tr>
<td></td>
<td>2019: ≥0,04 W/kg</td>
<td>unzureichend</td>
<td>Abwesenheit / unzureichend</td>
</tr>
<tr>
<td>Befinden und Symptome</td>
<td>Alltagsexposition durch Mobiltelefone und Sendeanlagen</td>
<td>unzureichend</td>
<td>Abwesenheit / unzureichend</td>
</tr>
<tr>
<td></td>
<td>Kurzfristig: Mobiltelefone und Sendeanlagen (<1 h)</td>
<td>Abwesenheit</td>
<td>Abwesenheit</td>
</tr>
<tr>
<td>Auswirkungen auf das Verhalten bei Kindern und Jugendlichen</td>
<td>Diverse: pränatal (Mobiltelefonnutzung der Mutter), Mobiltelefonnutzung des Kindes, ortsfeste Sendeanlagen</td>
<td>unzureichend</td>
<td>unzureichend</td>
</tr>
<tr>
<td>Kognition</td>
<td>Intensive Mobiltelefonnutzung</td>
<td>nicht beurteilt</td>
<td>unzureichend</td>
</tr>
<tr>
<td>Entwicklung, Schwangerschaft</td>
<td>Intensive mütterliche Mobiltelefonnutzung</td>
<td>nicht beurteilt</td>
<td>unzureichend</td>
</tr>
<tr>
<td>Fertilität (Spermienqualität)</td>
<td>Tägliche Mobiltelefonnutzung</td>
<td>begrenzt</td>
<td>unzureichend</td>
</tr>
<tr>
<td>Hirnströme</td>
<td>≤8 h Mobiltelefonexposition</td>
<td>ausreichend</td>
<td>ausreichend</td>
</tr>
<tr>
<td>Durchblutung und Stoffwechsel des Gehirns</td>
<td>≥0,9 W/kg*</td>
<td>begrenzt</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Blut-Hirn-Schanke</td>
<td><0,1 W/kg*</td>
<td>unzureichend</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Direkte DNS-Schädigung</td>
<td>≥2 W/kg*</td>
<td>unzureichend</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Indirekte DNS-Schädigung</td>
<td>≥2 W/kg* bzw. ≥0,1 W/kg*</td>
<td>begrenzt</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Zellproliferation (Vermehrung)</td>
<td>≥1 W/kg*</td>
<td>unzureichend</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Apoptose (programmierter Zelltod)</td>
<td>≥1,6 W/kg*</td>
<td>begrenzt</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Oxidativer Stress – Reaktive Sauerstoffspezies (ROS)</td>
<td>≥2 W/kg*</td>
<td>begrenzt</td>
<td>nicht beurteilt</td>
</tr>
<tr>
<td>Gen- und Proteinexpression</td>
<td>unklar</td>
<td>begrenzt</td>
<td>nicht beurteilt</td>
</tr>
</tbody>
</table>

7 Verfahren und Vollzug

7.1 Standortsuche für Antennen

7.1.1 Grundlagen

Der rechtliche Rahmen für das Bewilligungsverfahren von Mobilfunk-Basisstationen umfasst die folgenden Gesetze und Verordnungen sowie die damit verbundenen Vollzugshilfen:

- Im Fernmeldegesetz und in den Konzessionen für die Nutzung der Frequenzen für den Mobilfunk sind unter anderem der Umfang der Mitbenutzung von Infrastrukturen der Mobilfunkanbieter sowie die Anforderungen an die Mindestabdeckung der Fläche und der Bevölkerung mit Mobilfunkdiensten geregelt.

- Basierend auf den Vorgaben und Grundzügen des Umweltschutzgesetzes sind in der NISV und den Vollzugsempfehlungen zur NISV Immissionsgrenzwerte, Anlagegrenzwerte, der Anlagebegriff sowie die Art und Weise der rechnerischen und messtechnischen Ermittlung der elektrischen Feldstärken geregelt.

- Das Raumplanungsgesetz regelt die Anforderungen für Standorte ausserhalb von Bauzonen. Da gemäss Raumplanungsgesetz die Siedlungsgebiete grundsätzlich durch Anlagen im Siedlungsgebiet versorgt werden sollen, sind Anlagen in Bauzonen und somit in Wohnzonen zu errichten.

- Die Bewilligungsverfahren sind kantonal geregelt. In der Regel ist für jede Anlage mit Sendeleistung über 6 W ERP sowie für Änderungen im Sinne der NISV ein Baugesuch erforderlich (vgl. Kap. 7.2.1.2 ff.).

Aufgrund politischer Beschlüsse haben verschiedene Städte und Gemeinden ihre gesamten Immobilien aus dem Finanz- und Verwaltungsvermögen für den Bau von Mobilfunkstationen ausgeschlossen (z. B. Antennenmoratorien Stadt Bern, Stadt Genf, Teilmoratorium Stadt Zürich).

7.1.2 Planungsrechtliche Vorgaben

Der gesamte Gebäudebestand der Schweiz umfasst ca. 2,5 Millionen Gebäude. 24 Prozent oder 595 000 Objekte liegen ausserhalb der Bauzonen und ca. 10 Prozent werden als Bürofläche, Gewerbe- und Lagerfläche benutzt. Fast zwei Drittel aller Gebäude der Schweiz dienen hauptsächlich dem Wohnen, wiederum zwei Drittel davon sind Einfamilienhäuser.

Mobilfunkanlagen, die das Siedlungsgebiet versorgen, sollen grundsätzlich innerhalb der Bauzone errichtet werden; sie sind hier grundsätzlich zonenkonform. Ausserhalb der Bauzonen werden Mobilfunkanlagen nur dann bewilligt, wenn die Standortgebungheit gegeben ist.

7.1.3 Mietpreise

7.1.4 Herausforderungen bei der Standortsuche

Die fehlenden Ausbau- oder Mitbenutzungsmöglichkeiten können zusammen mit der beschränkten Verfügbarkeit von geeigneten Alternativstandorten dazu führen, dass bei der notwendigen Verdichtung der Netze auf Standorte ausgewichen werden muss, die weder aus Sicht der Betreiber noch der Standortgemeinden optimal sind, oder dass gar keine Standorte gefunden werden können.
7.2 Bewilligung und Vollzug durch Kantone und Gemeinden

7.2.1 Heutige Situation

Für den Vollzug der NISV sind bei kommerziellen Mobilfunkanlagen die Kantone und Gemeinden und bei Mobilfunkanlagen für den Bahnfunk (GSM-Rail) das Bundesamt für Verkehr zuständig. In der Regel führen städtische oder kantonale NIS-Fachstellen die umweltrechtliche Beurteilung von Mobilfunkanlagen im Rahmen von Baugesuchen durch (nachfolgend, wo nicht präzisiert, «NIS-Fachstellen» genannt), die Bewilligung erfolgt über die zuständige Behörde.

7.2.1.1 Bewilligungspflichtige Neu- und Umbauten

• *Materielle Prüfung des Baugesuchs mit Standortdatenblatt:* Die zuständige Baubewilligungsbehörde prüft das Gesuch und nimmt für die Beurteilung des Standortdatenblattes in der Regel die Unterstützung der zuständigen NIS-Fachstelle in Anspruch. Diese überprüft die Angaben im Standortdatenblatt, was meistens einen vorgängigen Augenschein vor Ort und eine unabhängige Strahlungsmodellierung (Berechnung) bedingt. Erst wenn sicher ist, dass mit den beantragten Betriebsparametern die Grenzwerte der NISV rechnerisch eingehalten werden können, empfiehlt die NIS-Fachstelle die Bewilligung der Anlage (allenfalls unter Auflagen). Findet die NIS-Fachstelle relevante Fehler im Standortdatenblatt, muss der Gesuchsteller das Standortdatenblatt korrigieren. In der Praxis kommt es vor, dass mehrere Korrekturrunden notwendig sind, bevor mittels Fachbericht die abschliessende Empfehlung zur Bewilligung durch die NIS-Fachstelle gegeben werden kann.

• *Baubewilligung und Rekursmöglichkeiten:* Hält eine geplante Mobilfunkanlage die baurechtlichen Vorschriften sowie den rechnerischen Prognosen die Grenzwerte der NISV ein, muss sie von der zuständigen Behörde bewilligt werden. Der Entscheid über das Baugesuch wird dem Gesuchsteller und allfälligen Einsprechern mitgeteilt. Diese (genau wie Rekurrenten, die erst nach Bewilligung der Anlage vor Gericht gehen können) haben die Möglichkeit, den Entscheid über kantonale Beschwerdeinstanzen bis hin zum Bundesgericht anzufechten.

• *Bauabnahme:* Nach Errichtung oder Umbau der Anlage wird diese durch die Baubewilligungsbehörde auf ihre Übereinstimmung mit der Baubewilligung hin überprüft. Diese Prüfung umfasst die Lokalisation der Masten und Antennen sowie die montierten Antennentypen und deren Ausrichtung. Die nichtionisierende Strahlung der Antennen kann zu diesem Zeitpunkt noch nicht geprüft werden, da die Anlage erst nach der Schlussabnahme durch die Behörde in Betrieb genommen werden darf.

• *Abnahmemessungen:* An Orten mit empfindlicher Nutzung (OMEN) in der Umgebung der Anlage, bei denen der Anlagegrenzwert rechnerisch zu mehr als 80 Prozent ausgeschöpft ist, können die Behörden (in der Regel auf Empfehlung der NIS-Fachstelle) eine Abnahmemessung der Strahlungsbelastung nach Inbetriebnahme der neuen

7.2.12 Nicht baubewilligungspflichtige Änderungen an Mobilfunkanlagen

7.2.1.3 Anteil der nicht baubewilligungspflichtigen Änderungen im Vergleich zu ordentlichen Baugesuchen

7.2.1.4 Ablauf der Kontrolle nicht bewilligungspflichtiger Änderungen

7.2.2 Einflussfaktoren im bisherigen Vollzug

Im Jahr 2013 hat das BAFU mit den Vollzugsverantwortlichen der Kantone und ausgewählten Bundesstellen eine Analyse des Vollzugs der Umweltvorschriften durchführen lassen. Zu diesem Zeitpunkt stellten die befragten Kantone bei treffend NIS im Vergleich zu anderen Umweltbereichen am wenigsten Vollzugsdefizite fest.

7.2.2.1 Erfolgsfaktoren

Die allermeisten Mobilfunkanlagen in der Schweiz werden im Rahmen der bewilligten Betriebsparameter betrieben, Grenzwertverletzungen an OMEN sind daher ausserordentlich selten. Das BAFU und die Kantone führen dies auf folgende Faktoren im Vollzugssystem für Mobilfunkanlagen zurück:

- **Klare rechtliche Grundlagen und gute Vollzugshilfen**: Die Bewilligung einer neuen oder die substanzielle Änderung einer bestehenden Anlage benötigt ein Baugesuch und unterliegt klaren Regeln, die in der NISV des Bundes rechtlich verankert sind und in der Vollzugshilfe präzisiert werden. Die klaren Regulierungen tragen dazu bei, dass alle Akteure wissen, was zu tun ist. Eine Vorlage für ein standardisiertes Standortdatenblatt (Emissionserklärung) sorgt dafür, dass alle NIS-relevanten Angaben zum Betrieb einer Anlage sowie Strahlungsberechnungen für die höchstbelasteten OMEN in der Umgebung der Anlage von allen Betreibern einheitlich deklariert werden. Verschiedene weitere Vollzugshilfsmittel (Nachtrag zur Vollzugshilfe, BPUK-Empfehlung) definieren Bagatellkriterien, sodass kleine operative Änderungen oder Antennenwechsel auch ohne Baugesuch durchgeführt werden können.

Gute Zusammenarbeit der NIS-Fachstellen untereinander und mit übergeordneten Bundesstellen: Ein regelmässiger Austausch zwischen den NIS-Fachstellen untereinander sowie mit den relevanten Bundesstellen (BAFU, BAKOM, BAV) im Rahmen der Arbeitsgruppe NIS des Cerc'Air erlaubt eine rasche Klärung rechtlicher, technischer oder vollzugstechnischer Fragen und stellt einen möglichst einheitlichen Vollzug der NISV schweizweit sicher. Die Arbeitsgruppe ist auch ein zentrales Ansprechgremium für die kommerziellen Mobilfunkbetreiber, sodass Anliegen von der und an die Anbieterseite effizient abgewickelt werden können.

Funktionierende Qualitätssicherungs- und Kontrollsysteme: Die Kontrolle des rechtskonformen Betriebs nach Abschluss des Baubewilligungsverfahrens wird durch effiziente firmeninterne Qualitätssicherungssysteme sowie durch externe Kontrollen des laufenden Antennenbetriebs via BAKOM-Datenbank durch die NIS-Fachstellen gewährleistet.

Der (lokale) öffentliche Druck hat in Form von Einsprüchen während des Baubewilligungsprozesses oder Anfragen bezüglich des Betriebs vorhandener Mobilfunkantennen strenge Anforderungen begünstigt und zu einer guten Arbeit der Vollzugsakteure beigetragen.

7.2.2.2 Herausforderungen

Die Kantone stellen im gegenwärtigen NIS-Vollzug die folgenden Herausforderungen fest:

- Steigende Anzahl zu prüfender Standortdatenblätter: Die Einhaltung der genauen und strengen rechtlichen Vorgaben, unter denen eine Mobilfunkanlage gebaut und betrieben werden darf, bedarf einer entsprechend genauen und daher zeitintensiven Kontrolle durch die NIS-Fachstellen im Bewilligungsverfahren und während des Betriebs.

Hintergrund der Einführung der Mobilfunkschalttechnologie 5G – sind auch Anpassungen an Vollzugsempfehlungen, weiteren Hilfsmitteln oder sogar der NISV selbst notwendig. Messfirmen, die zum Beispiel im Rahmen von Baubewilligungsverfahren Abnahmemessungen durchführen, sind auf die regelmässige Aktualisierung der Messvorschriften von METAS und BAFU angewiesen.

- **Qualität der Standortdatenblätter der Mobilfunkbetreiber:** Gleichzeitig mit dem Anstieg der Menge an zu bewilligenden oder zu kontrollierenden Standortdatenblättern ist deren Qualität im Durchschnitt zuletzt gesunken. Bis zu einem Drittel der eingereichten Standortdatenblätter müssen aufgrund ungenügender Qualität von den Mobilfunkbetreibern überarbeitet werden. Fehlerhafte Standortaufnahmen, die Nicht- oder Falscherkennung freier Bauzonen und falsche Verortungen der sogenannten Worst-Case-Punkte an OMEN sind die häufigsten Fehler, wegen deren Standortdatenblätter durch den Gesuchsteller korrigiert werden müssen, bevor sie bewilligungsfähig sind. Die Fehlerabklärungen und Korrekturforderungen seitens der NIS-Fachstellen sind für diese ausserordentlich zeitaufwendig, und auch die Umsetzung der Korrekturen durch die Betreiber verzögert den Abschluss der Verfahren in der Regel angewiesen.

- **Beratung und Information:** Die Angst eines substanzialen Bevölkerungsteils gegenüber der Strahlung von Basisstationen bleibt weiterhin eine Realität. Die damit verbundene aufwendige Beratungs- und Informationstätigkeit obliegt zu einem grossen Teil den NIS-Fachstellen.

7.2.3 Zukunftige Herausforderungen für Bewilligungsbehörden

betroffenen Fachstellen der kantonalen und kommunalen Behörden, der ohne eine substanzielle Erhöhung der Ressourcen nicht zu bewältigen sein wird.

Konkrete Auswirkungen auf die Bewilligungs-, Kontroll- und Beratungstätigkeit der kommunalen und kantonalen Behörden sind in folgenden Bereichen zu erwarten:

- Baueingaben: Per sofort und anhaltend über mehrere Jahre wird ein deutlicher Anstieg an Baueingaben für Neu- und Umbauten erwartet.
- Messberichte und weitere Kontrollen: In ähnlichem Mass wird auch die Anzahl der zu prüfenden Messberichte und weiteren Kontrollen ansteigen.
- Nicht bewilligungspflichtige Änderungen an bestehenden Anlagen: Es ist damit zu rechnen, dass die Anzahl der zur Kontrolle eingereichten Standortdatenblätter aufgrund von nicht bewilligungspflichtigen Änderungen im Vergleich zu den letzten Jahren im Durchschnitt ebenfalls deutlich zunehmen wird.

Der Betrieb eines Mobilfunknetzes ist bereits heute dynamisch und zeichnet sich durch häufige Anpassungen an den Anlagen aus, um verschiedenste Kundenbedürfnisse zu befriedigen. Die Einführung von 5G ermöglicht noch raschere und gezieltere Anpassungen und erfordert daher eine sehr flexible Netzsteuerung. Um die Einhaltung der Grenzwerte im Bewilligungsverfahren und den bewilligungskonformen späteren Betrieb der Anlagen weiterhin kontrollieren zu können, sind Anpassungen am bestehenden Vollzugssystem notwendig, das heute noch auf einen eher statischen Betrieb der Anlagen zugeschnitten ist.

7.3 Aktuelle Arbeiten betreffend NISV und Vollzugshilfsmittel

Infolge der stetigen technologischen Weiterentwicklung des Mobilfunks müssen periodisch auch die Vollzugsinstrumente ergänzt bzw. angepasst werden. Unabhängig von den Aktivitäten der Arbeitsgruppe Mobilfunk und Strahlung laufen derzeit die nachfolgend beschriebenen Arbeiten.
7.3.1 Vereinfachung der Bewilligungsverfahren

Die BPÜ hat Ende 2018 die Konferenz der Vorsteher der Umweltschutzämter der Schweiz (KVU) beauftragt, die Mitwirkung der Kantone und die Koordination mit der BPÜ bei der Arbeitsgruppe Mobilfunk und Strahlung des Bundes sicherzustellen und auf eine Vereinfachung der Verfahren hinzuwirken. In der Folge müssen die Auswirkungen der vorliegenden Resultate der Bundesarbeitsgruppe auf die BPÜ-Empfehlungen zur Bewilligung von Mobilfunkanlagen aus dem Jahr 2013 analysiert werden.

7.3.2 Revision der NISV 2019

Die NISV ist technologieneutral und gilt damit unabhängig davon, ob es sich bei der Mobilfunktechnologie um 3G (UMTS), 4G (LTE), 5G (New Radio) oder weitere zukünftige Technologien handelt. Im Hinblick auf diese zukünftige technische Weiterentwicklung des Mobilfunks war jedoch trotzdem eine Revision der NISV notwendig. Diese hat Regelungslücken geschlossen, die auch für den Aufbau der 5G-Netze hinderlich sein könnten:

- Die Revision umfasste zum einen die Festlegung eines Anlagegrenzwertes für die Frequenzen zwischen 900 MHz und 1,8 GHz. Für diesen Frequenzbereich war in der NISV nur ein Immissionsgrenzwert, aber noch kein Anlagegrenzwert festgelegt. Im Rahmen der Vergabe der neuen Mobilfunkfrequenzen Anfang 2019 wurden neu jedoch auch Frequenzen um 1,4 GHz für den Mobilfunk freigegeben.
- Zum andern wurde in der NISV ein Grundsatz zur Beurteilung von sogenannten adaptiven Antennen (Beamforming) verankert. Bereits jetzt kommen solche Antennen vermehrt zum Einsatz.
- Schliesslich wurde mit der Revision dem BAFU der Auftrag zur Einführung eines NIS-Monitorings erteilt, welches Auskunft über die Belastung der Bevölkerung mit Mobilfunkstrahlung geben soll (vgl. Kap. 10.2).

Die revidierte Verordnung wurde am 17. April 2019 durch den Bundesrat verabschiedet und ist am 1. Juni 2019 in Kraft getreten.\(^\text{101}\)

7.3.3 Vollzugshilfe zu adaptiven Antennen

Ende 2019 soll, als Folge der Inkraftsetzung der revidierten NISV, ein Nachtrag zur geltenden Vollzugshilfe für Mobilfunkanlagen publiziert werden, der aufzeigt, wie adaptive Antennen in der Bewilligung beurteilt werden können. Dabei sind folgende Prinzipien zu berücksichtigen:

- Adaptive Antennen sollen nicht verhindert werden.
- Der Grundsatz der vorsorglichen Emissionsbegrenzung soll gewahrt bleiben.
- Der Vollzug soll praxistauglich sein.

7.3.4 Überprüfung der Messmethode

Aus Sicht des BAFU wären insbesondere systematische Abweichungen zwischen der Berechnungs- und der Messmethode störend und die Vollzugsempfehlungen diesbezüglich zu korrigieren.

METAS und BAFU haben ein Projekt spezifiziert, welches die erwähnte Schwenkmethode mit der Methode der Mittelwertbildung vergleichen soll. Die Untersuchungen haben bis im Sommer 2019 gedauert und werden nun ausgewertet.

Als Folge daraus könnte sich eine Überarbeitung der Messempfehlungen von METAS und BAFU oder eine Anpassung der Berechnungsmethode ergeben.
8 Optionen

Aufgrund der in den vorgängigen Kapiteln dargestellten Faktenlage ergeben sich im Hinblick auf die kommende Mobilfunkgeneration 5G verschiedene denkbare Massnahmen und Optionen. Die Arbeitsgruppe hat insgesamt 58 Massnahmen identifiziert und thematisch gruppiert (vgl. Anhang 1: Geprüfte Massnahmen). Sodann wurden die folgenden möglichen Optionen ausgearbeitet und hinsichtlich ihrer Auswirkungen in Bezug auf verschiedene Kriterien bewertet:

- Option 1 (Kap. 8.1): Status quo Anforderungen NISV
- Option 2 (Kap. 8.2): Keine Änderung Anlagegrenzwert, aber strengere Anforderungen in der NISV an Kleinzellenanlagen und adaptive Antennen (Vorschlag: Ärztinnen und Ärzte für Umweltschutz AefU)
- Option 3 (Kap. 8.3): Erhöhung Anlagegrenzwert auf einheitliche 6 V/m und Mittelwert-Beurteilung (Vorschlag: Schweizerischer Verband der Telekommunikation asut)
- Option 4 (Kap. 8.4): Erhöhung Anlagegrenzwert auf 11,5 V/m pro Betreiber (Vorschlag: Eidgenössische Kommunikationskommission ComCom)
- Option 5 (Kap. 8.5): Erhöhung Anlagegrenzwert auf einheitliche 20 V/m (Vorschlag: Schweizerischer Verband der Telekommunikation asut)

In Tabelle 18 findet sich eine Übersicht der Optionen mit Bewertungen zu folgenden Kriterien:

- Anzahl zusätzlicher Mobilfunkanlagen zur Einführung von 5G:

- Änderung der höchsten Exposition (gegenüber heute) an Orten mit empfindlicher Nutzung (OMEN) durch Mobilfunkanlagen:
 Diese ist von der Höhe des Anlagegrenzwertes (AGW) und vom Betriebszustand abhängig, in welchem der AGW eingehalten sein muss (maximale Sendeleistung oder zeitliche Mittelung).

- Änderung der Exposition (gegenüber heute) durch das Mobiltelefon:
 Die Änderungen der Exposition können aus Kapitel 5 abgeleitet werden.

- Finanzielle Mittel:
 Zur Abschätzung der finanziellen Auswirkungen der einzelnen Optionen wurden, basierend auf den Kosten für den Ausbau einzelner Anlagen (vgl. Tabelle 10), jeweils die finanziellen Mittel für die gesamte Investition sowie für den Betrieb über fünf Jahre zusammengefasst.

- Zeitdauer Rechtsänderungen:
 Für eine Anpassung auf Verordnungsstufe (z. B. Änderung NISV) wird von einem Zeitbedarf von zwei Jahren und für eine Gesetzesanpassung von fünf Jahren ausgegangen.

- Dauer bis zur flächendeckenden Einführung von 5G:
 Die Einführung von 5G hat in der Schweiz bereits begonnen und geht weiter. Je nach Option erfolgt der Ausbau schneller oder langsamer als bisher. Die Dauer, bis 5G flächendeckend eingeführt ist, ergibt sich aus der Dauer der

Abschätzung der Anzahl zusätzlicher Mobilfunkanlagen für die Einführung von 5G

In der Schweiz gibt es 8542 Mobilfunkanlagen mit einer Sendeleistung von mehr als 6 W ERP (vgl. Kap. 4.3.1). Werden Anlagen verschiedener Betreiber, die sich am selben Standort befinden, separat gezählt, sind es laut BAKOM 10943 Mobilfunkanlagen (Stand Dezember 2018). Für die Einführung von 5G ist gemäss Kapitel 4.3.6.1 gegenüber heute eine 12,4-fache Sendeleistung nötig (oder 10,9 dB). Für die Abschätzung der notwendigen Mobilfunkanlagen, um 5G in der Schweiz flächendeckend und in hoher Qualität einführen zu können, wurde wie folgt vorgegangen:

- Die Abschätzung geht von der Annahme aus, dass die Anzahl zusätzlicher Mobilfunkanlagen in erster Näherung proportional zur zusätzlich benötigten Sendeleistung ist.
- Je nach Ausgestaltung der Optionen ergeben sich gegenüber heute Möglichkeiten zu Leistungssteigerungen bei den Anlagen. So würde beispielsweise eine Erhöhung des Anlagegrenzwertes auf einheitliche 20 V/m in der Option 5 zu einer Leistungssteigerung bis zu einem Faktor 16 (oder 12 dB) führen.
- Diese Faktoren multipliziert (oder in dB addiert) ergeben, wie viel Leistung für die Einführung von 5G auf den Standorten noch nötig wäre.
- Die Anzahl bestehender Anlagen wird mit dem Faktor der noch benötigten Leistung multipliziert. Daraus ergibt sich die totale Anzahl zusätzlich benötigter Anlagen.
- Je nach Option kann zum Teil eine gewisse Anzahl bestehender Anlagen ausgebaut werden und von der erhaltenen Anzahl abzogen werden (bei Option 1 beispielsweise 5149 Anlagen).

In Abbildung 15 sind die Optionen mit einer Einordnung zu folgenden Kriterien dargestellt:

- Zeitbedarf für eine qualitativ gute Versorgung der Schweiz mit 5G (x-Achse)
- Grad und Qualität der Versorgung mit 5G (blaue y-Achse)
- Höchste Exposition an Orten mit empfindlicher Nutzung (OMEN) durch Mobilfunkanlagen (grüne y-Achse)

Der Zeitbedarf, bis eine qualitativ gute Versorgung mit 5G gemäss dem Standard ITU IMT-2020 in der Schweiz flächendeckend vorhanden ist, ist in groben Kategorien dargestellt (0 bis 10 Jahre, 10 bis 20 Jahre, 20 bis 30 Jahre, mehr als 30 Jahre).

Die blauen dreieckigen Flächen stellen qualitativ dar, in welchem Ausmass der Ausbau auf 5G, der 2019 bereits begonnen hat, voranschreitet, und welche Qualität mit der betreffenden Option am Schluss erreicht werden kann.

Die grüne y-Achse zeigt die je nach Option höchste zulässige Exposition an OMEN durch eine Mobilfunkanlage. Die Grafik gibt aber keine Hinweise auf die räumliche Verteilung der Exposition sowie auf die Anzahl Personen und deren zu erwartende Aufenthaltszeiten in exponierten Bereichen und damit auch nicht auf die durchschnittliche Exposition der

Grundsätzliche Bemerkungen zu den Optionen

Aus der Arbeitsgruppe werden zu den Optionen die folgenden grundsätzlichen Bemerkungen angebracht:

- Der Städteverband (SSV) empfiehlt eine ökonomische Expertise der veranschlagten Kostenfolgen der fünf Optionen. Aus Sicht des SSV liegen die notwendigen Grundlagen für eine im Rahmen des umweltschutzrechtlichen Vor sorgegebots vorzunehmende Beurteilung der wirtschaftlichen Tragbarkeit nicht vor.

- Die Ärztinnen und Ärzte für Umweltschutz (AefU) weisen darauf hin, dass angesichts der derzeitigen exponentiellen Zunahme der übertragenen Daten bei allen Optionen früher oder später eine Verdichtung der Netze notwendig sein wird. Zudem stellt sich für die AefU die Frage nach der Nachhaltigkeit gewisser Optionen und damit insbesondere die Frage, wie lange es bei einer allfälligen Erhöhung der Grenzwerte gehen würde, bis diese wieder ausgeschöpft wären.

- Die Mobilfunkbetreiber beanspruchen zur Realisierung von 5G Rahmenbedingungen, welche einen raschen Start des Netzausbaus ermöglichen und eine landesweite und qualitativ hochstehende Versorgung mit 5G in rund fünf Jahren erlauben. Ansonsten würden die Mobilfunknetze in der Schweiz nicht mehr international wettbewerbsfähig sein, und die Einführung neuer Anwendungen und Dienstleistungen in anderen Branchen verzögerte sich.

- Sunrise merkt zudem an, dass die Konformität der Optionen mit den Zielsetzungen der Strategie «Digitale Schweiz» sowie mit der fehlenden Standortverfügbarkeit gemäss Kapitel 7.1 nicht explizit evaluiert wurde und nur in den Optionen 4 und 5 implizit eingeschlossen sei.
Tabelle 18: Übersicht der fünf Optionen mit Informationen zu Anzahl zusätzlicher Mobilfunkanlagen, Änderung der Exposition, Kosten und Realisierungsdauer, bis eine qualitativ gute 5G-Versorgung in der Schweiz flächendeckend realisiert ist. Option 2 wird keine vergleichbare 5G-Versorgung sicherstellen können.

<table>
<thead>
<tr>
<th>Option Nr.</th>
<th>Name</th>
<th>Anzahl zusätzliche Mobilfunkanlagen</th>
<th>Änderung (gegenüber heute) der höchsten Exposition an Orten mit empfindlicher Nutzung (OMEN) durch Mobilfunkanlagen</th>
<th>Änderung (gegenüber heute) der Exposition durch das Mobiltelefon</th>
<th>Finanzielle Mittel Investition</th>
<th>Finanzielle Mittel Betrieb (über 5 Jahre)</th>
<th>Zeitdauer Rechtsänderungen</th>
<th>Zeitbedarf für eine qualitativ gute Versorgung mit 5G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Status quo Anforderungen NISV</td>
<td>26 500 + Nachrüstung 5000 bestehende Anlagen</td>
<td>Bleibt etwa gleich</td>
<td>Nimmt leicht ab</td>
<td>7,7 Mia.</td>
<td>2,1 Mia.</td>
<td>0 Jahre</td>
<td>20–30 Jahre</td>
</tr>
<tr>
<td>2</td>
<td>Keine Änderung AGW, aber strengere Anforderungen in der NISV an Kleinzellenanlagen und adaptive Antennen</td>
<td>46 500</td>
<td>Bleibt gleich</td>
<td>Nimmt leicht ab</td>
<td>13 Mia.</td>
<td>3,5 Mia.</td>
<td>5 Jahre</td>
<td>>30 Jahre</td>
</tr>
<tr>
<td>3</td>
<td>Erhöhung AGW auf einheitliche 6 V/m und Mittelwert-Beurteilung</td>
<td>7500 + Nachrüstung aller bestehender Anlagen</td>
<td>Nimmt zu</td>
<td>Nimmt leicht ab</td>
<td>3,2 Mia.</td>
<td>0,8 Mia.</td>
<td>2 Jahre</td>
<td>10–20 Jahre</td>
</tr>
<tr>
<td>4</td>
<td>Erhöhung AGW auf 11,5 V/m pro Betreiber</td>
<td>Nachrüstung 3000 bestehende Anlagen; Mitbenutzung 3500 bestehende Anlagen</td>
<td>Nimmt stark zu</td>
<td>Bleibt gleich</td>
<td>0,9 Mia.</td>
<td>0,3 Mia.</td>
<td>2 Jahre</td>
<td>0–10 Jahre</td>
</tr>
<tr>
<td>5</td>
<td>Erhöhung AGW auf einheitliche 20 V/m</td>
<td>0 zusätzliche Makrozellen, Nachrüstung 8500 bestehende Anlagen, 2000 Kleinzellen-Verdichtungen (bei 50 % der heutigen Mikrozellen)</td>
<td>Nimmt stark zu</td>
<td>Bleibt gleich</td>
<td>1,0 Mia.</td>
<td>0,3 Mia.</td>
<td>2 Jahre</td>
<td>0–10 Jahre</td>
</tr>
</tbody>
</table>
Abbildung 15: Bewertung der fünf Optionen mit den Kriterien Auswirkung auf die Exposition, Zeitbedarf zur Realisierung sowie Kosten mit Zahlen der Branche.
8.1 Option 1: Status quo Anforderungen NISV

8.1.1 Beschreibung
Die NISV wird nicht angepasst, die bestehenden Grenzwerte (IGW und AGW) gelten unverändert weiter.
Allenfalls wird die Messmethode überprüft und nach Bedarf angepasst.

8.1.2 Bewertung

8.1.2.1 Leistungsfähigkeit und Kosten

Die damit verbundenen finanziellen Mittel für die Investitionen belaufen sich nach Berechnungen der Branche auf rund 7,7 Milliarden Franken und für den Betrieb über fünf Jahre auf rund 2,1 Milliarden Franken.

8.1.2.2 Exposition

Die Auswirkungen der Option hängen schliesslich von der Ausgestaltung der angepassten Messmethode ab. Die Rastermethode (räumlicher Mittelwert) könnte gegenüber der bisherigen Schwenkmethode in der Regel tiefere Feldstärken ergeben. Hierdurch könnten nachträglich, basierend auf der Messung, höhere Sendeleistungen (im Rahmen der rechtlichen Vorgaben) bewilligt werden, was eine Erhöhung der mittleren Exposition zur Folge hätte. Die Ausgestaltung der Messmethode wird sich jedoch nur in beschränktem Masse auf die nötige Anzahl zusätzlicher Antennen auswirken.

8.1.3 Umsetzung

8.1.3.1 Notwendige Anpassungen und Zuständigkeiten
Es sind keine rechtlichen Anpassungen notwendig. Der Aufwand beschränkt sich auf die Überprüfung der Vollzugshilfe und allenfalls auf die Anpassung der Messmethode, wofür BAFU und METAS zuständig sind. Für die Vollzugsbehörden ergibt sich im Vergleich zu heute ein deutlicher Mehraufwand, da eine Vielzahl neuer Anlagen und zahlreiche Umrüstungen bewilligt und kontrolliert werden müssen. Dieser Aufwand würde bei einer gegenüber heute erhöhten Neubauphase (1000 statt 500 Anlagen pro Jahr) nochmals viel grösser.
8.1.3.2 Zeitrahmen

8.2 Option 2: Keine Änderung Anlagegrenzwert, aber strengere Anforderungen in der NISV an Kleinzellenanlagen und adaptive Antennen

8.2.1 Beschreibung

Die bestehenden Grenzwerte (AGW von 4 bis 6 V/m sowie IGW) gelten weiterhin. Mit einem Paket von Massnahmen soll sichergestellt werden, dass das Schutzniveau hinsichtlich NIS zukünftig mindestens erhalten bleibt. Insbesondere wird verhindert, dass bei adaptiven Antennen, wie zurzeit diskutiert wird, durch Anwendung eines Korrekturfaktors gemäss revidierter NISV kurzfristig höhere Expositionen auftreten könnten. Mit den einzelnen Massnahmen wird ein zusätzlicher Anreiz zum sukzessiven Ausbau eines leistungsstarken Glasfaser- bzw. Festnetzes geschaffen, das so weit wie möglich an die Stelle einer Mobilfunkversorgung mit aufrüstbaren Makroantennen treten soll:

- Neu sollen die bestehenden AGW auch für Kleinanlagen (<6 W ERP) gelten, weil diese eine immer grössere Verbreitung finden und zunehmend auch OMEN betreffen.
- Für adaptive Antennen ist der Betriebszustand massgebend, der für die Orte mit empfindlicher Nutzung die höchste technisch mögliche Exposition bedeutet und nicht wie im Status quo korrigiert wird.
- Das Mobilfunknetz ist durch ein leistungsfähiges Festnetz zu entlasten, an dessen Anschlusspunkten in Haushalten, Verwaltung und Firmen bedarfsgerecht Kleinstfunkanlagen zur mobilen Versorgung betrieben werden.
- Die Sendepläne von 2G und 3G müssen spätestens in zwei Jahren abgeschaltet respektive auf 5G umgerüstet werden, damit weitere Leistungserhöhungen bei den Anlagen vermieden werden können.
- Die Behörden informieren regelmässig über Gesundheitsrisiken von Funkanwendungen und instruieren die Bevölkerung über eine strahlungsminimierte Nutzung von digitalen Informations- und Kommunikationstechnologien.

8.2.2 Bewertung

8.2.2.1 Leistungsfähigkeit und Kosten

8.2.2 Exposition

Bei der Benutzung des Mobiltelefons kann diese Option zu einer Abnahme der Uplink-Exposition führen, da aufgrund der grossen Anzahl zusätzlicher Antennenstandorte die Funkstrecke kürzer wird. Dadurch muss das Mobiltelefon eine geringere Sendeleistung aufbringen, weil sich weniger dämpfende Hindernisse zwischen Telefon und Basisstation befinden.

8.2.3 Umsetzung

8.2.3.1 Notwendige Anpassungen und Zuständigkeiten

Die Mobilfunkkonzessionen sind technologieneutral. Wenn die Abschaltung der Sendeanlagen 2G und 3G von den Netzbetreibern nicht freiwillig erfolgt und eine Abschaltung stattdessen vom Staat verlangt werden soll, müssen hierfür die Konzessionen angepasst und darin gewisse Technologien nicht mehr zugelassen werden.

Weil die Priorisierung der Festnetz-Infrastruktur gegenüber dem Mobilfunk im Rahmen der abgeschlossenen FMG-Revision vom Parlament abgelehnt wurde, ist davon auszugehen, dass die Umsetzung der Option Anpassungen auf der Gesetzesstufe notwendig macht.

Der Verzicht auf die Abnahmemessungen muss in einer Vollzugshilfe empfohlen werden.

Für die Vollzugsbehörden ergibt sich gegenüber heute ein drastischer Mehraufwand, da eine Vielzahl neuer Anlagen und zahlreiche Umrüstungen bewilligt und kontrolliert werden müssen.

8.2.3.2 Zeitrahmen

8.3 Option 3: Erhöhung Anlagegrenzwert auf einheitliche 6 V/m und Mittelwert-Beurteilung

8.3.1 Beschreibung
Mit verschiedenen Massnahmen wird eine Erhöhung der Sendeleistungen im Hinblick auf 5G ohne wesentliche Anpassung des AGW angestrebt:

- Der vorsorgliche Anlagegrenzwert wird von heute 4, 5 oder 6 V/m auf einheitliche 6 V/m harmonisiert. Der bestehende IGW bleibt unverändert.
- Bei der Berechnung der Exposition für den konventionellen Teil einer Anlage wird der Tagesmittelwert durch einen fixen, einheitlichen Reduktionsfaktor von 2,5 für die Sendeleistung berücksichtigt. Im Betrieb kann die Einhaltung des Tagesmittelwerts durch eine Softwarelösung sichergestellt werden.
- Realistischere Berechnung der Feldstärke, indem Dämpfungseffekte besser berücksichtigt werden.
- Hochrechnung auf die höhere Leistung nach einer Abnahmemessung (ohne erneute Bewilligung), wenn diese tieferen Werte ergibt als berechnet.
- Der Einspracheradius für Antennenanwohnende wird als fixer Perimeter auf 1 km festgesetzt.
- Mikrozellen bis 100 W ERP können ohne Nachweis der Einhaltung des AGW betrieben werden, aber einfache Distanzregelungen zur Einhaltung des IGW müssen berücksichtigt werden.
- Unbebaute Parzellen müssen neu nur noch berücksichtigt werden, wenn bereits ein Bauvorhaben vorliegt.

8.3.2 Bewertung

8.3.2.1 Leistungsfähigkeit und Kosten

Die Harmonisierung des AGW (von 4 oder 5 V/m auf 6 V/m) führt nicht nur zu einer Leistungserhöhung um den Faktor 1,44, sondern auch zu einer Vereinfachung des Vollzugs der NISV. Durch die Einführung eines fixen Tagesmittel-Reduktionsfaktors für die Sendeleistung bei der Berechnung der Exposition entspricht die massgebliche Sendeleistung der heute im Durchschnitt abgestrahlten. Die Befreiung der Mikrozellen bis 100 W ERP vom AGW fördert und beschleunigt die Verdichtung des Mobilfunknetzes mit Kleinzellen. Mit der Beschränkung der OMEN im Standortdatenblatt wird der Aufwand bei der Berechnung und den Kontrollmessungen reduziert.

8.3.2.2 Exposition
Die Zunahme der Sendeleistung um den Faktor 4,4 bewirkt eine Zunahme der maximalen Downlink-Exposition um den Faktor 2,1 (\(\sqrt[4]{4,4}\)). Auch im Durchschnitt wird der Downlink höher. Beispielsweise hat der fixe Tagesmittel-Reduktionsfaktor von 2,5 zur Folge, dass selbst eine Antenne, die gut ausgelastet ist, 2,5-mal stärker senden darf als heute, was die
Exposition um 58 Prozent \((\sqrt{2,5})\) erhöht. Damit kann der Tagesmittelwert deutlich über 6 V/m liegen, was durch eine Softwarelösung verhindert werden soll.

Die Uplink-Exposition ändert sich im Vergleich zu heute nicht wesentlich, weil das Netz wenig verdichtet wird.

8.3.3 Umsetzung

8.3.3.1 Notwendige Anpassungen und Zuständigkeiten

Änderungen der zahlreichen bestehenden Anlagen haben ein ordentliches Baubewilligungsverfahren zu durchlaufen, da die Änderungen nicht geringfügig sind sowie nicht den Bagatellkriterien der BPUK-Empfehlung entsprechen. Für die Vollzugsbehörden ergibt sich daher gegenüber heute ein deutlicher Mehraufwand.

Auch für die Betreiber erhöht sich der Aufwand pro Standort (Prüfung aktualisierter Standortdatenblätter, Messungen, neue Software-Funktionen etc.), was aber durch die reduzierte Anzahl neuer Anlagen teilweise kompensiert wird.

8.3.3.2 Zeitrahmen

8.4 Option 4: Erhöhung Anlagengrenzwert auf 11,5 V/m pro Betreiber

8.4.1 Beschreibung

Der AGW wird auf 11,5 V/m angehoben.

Der AGW gilt neu nur für die Antennen eines einzelnen Betreibers und nicht wie bisher für die gesamte Anlage.
8.4.2 Bewertung

8.4.2.1 Leistungsfähigkeit und Kosten

Anlagen, die heute nur durch einen einzelnen Betreiber genutzt werden, stehen neu auch den anderen Betreibern zur Verfügung, soweit dies realisierbar ist. Dadurch wird der Wettbewerb zwischen den drei Anbietern gestärkt, womit eines der Ziele des FMG erfüllt wird.

Es entstehen an verschiedenen OMEN an unterschiedlichen Standorten unterschiedliche Expositionen, je nachdem, wie viele Betreiber sich die Anlagen teilen.

8.4.2.2 Exposition

Die Leistungserhöhung hat an bestimmten Orten eine Erhöhung der Exposition um den Faktor 4 zur Folge. Wenn davon ausgegangen wird, dass die Leistungen auf den AGW von 11,5 V/m optimiert werden, entstehen an den höchstbelasteten OMEN maximale Feldstärken zwischen 11,5 und 16,3 V/m. Die maximale theoretische Exposition beim höchstbelasteten OMEN liegt bei rund 20 V/m, was nur vorkommt, wenn der höchstbelastete OMEN für alle drei Betreiber identisch ist. Es ist davon auszugehen, dass die tatsächlichen Expositionen unter diesen Werten liegen, da es selten auftritt, dass alle drei Anlagen der drei Betreiber beim höchstbelasteten OMEN gleichzeitig mit maximaler Leistung senden.

8.4.3 Umsetzung

8.4.3.1 Notwendige Anpassungen und Zuständigkeiten

Falls die Anlagedefinition mit den Bestimmungen des USG vereinbar ist (was noch zu prüfen ist), kann die Regelung in der NISV erfolgen (AGW und Anlagedefinition, Aufhebung des engen räumlichen Zusammenhangs). Sie liegt damit im Verantwortungsbereich des Bundesrates.

Der Koordinationsaufwand zwischen den Betreibern wird geringfügig kleiner, da es zu den Anlagen ein Dossier pro Betreiber gibt.

Die NIS-Datenbank des BAKOM muss, als Kontrollinstrument, angepasst werden.

Für die Vollzugsbehörden ergibt sich gegenüber heute ein deutlicher Mehraufwand, da eine Vielzahl neuer Anlagen und zahlreiche Umrüstungen bewilligt und kontrolliert werden müssen.
8.4.3.2 Zeitrahmen

Die notwendigen Arbeiten im Zusammenhang mit der Anpassung der NISV beanspruchen rund zwei Jahre. Der Zeitbe- darf für die Nachrüstung von 3000 und die Mitbenutzung von 3500 bestehenden Anlagen für den vollständigen 5G-Aus- bau wird auf 0 bis 10 Jahre geschätzt.

8.5 Option 5: Erhöhung Anlagegrenzwert auf einheitliche 20 V/m

8.5.1 Beschreibung

Der AGW wird auf 20 V/m angehoben.

Der Einspracheperimeter wird mit dem Ziel erweitert, dass bei nachträglichen Änderungen an Anlagen keine erneuten Baubewilligungen notwendig sind, weil der Kreis der Einspracheberechtigten nicht vergrössert wird.

8.5.2 Bewertung

8.5.2.1 Leistungsfähigkeit und Kosten

Mit der Erhöhung des Anlagegrenzwertes auf einheitlich 20 V/m wird an allen bestehenden Mobilfunkanlagen genügend Leistungsreserve geschaffen, um 5G flächendeckend gemäss den Qualitätsvorgaben der ITU (IMT-2020) einzuführen. Damit kann eine Zielsetzung des FMG erreicht werden, und die drei Anbieter können ihre Absicht, ihren Kunden 5G flächendeckend (d. h. draussen, in Gebäuden und mobil) und in hoher Qualität anzubieten, zügig in die Tat umsetzen.

8.5.2.2 Exposition

Im ungünstigsten Fall nimmt die maximale Downlink-Exposition (als Feldstärke) an höchstbelasteten OMEN um einen Faktor 4 bis 5 zu. Dank moderner Technologien dürfte der Unterschied von berechneter maximaler und an einem OMEN gemessener mittlerer Feldstärke grösse ausfallen als dies heute der Fall ist.

Da sich das Netz kaum verdichtet, verringert sich die Leistung der Mobiltelefone nicht.

8.5.3 Umsetzung

8.5.3.1 Notwendige Anpassungen und Zuständigkeiten

Falls die Anhebung des Grenzwerts mit dem Vorsorgeprinzip des USG vereinbar ist (was rechtlich noch zu prüfen ist), kann sie in der NISV erfolgen und liegt damit im Verantwortlichkeitsbereich des Bundesrates.

Der Bewilligungs- und Kontrollaufwand für die Vollzugsbehörden steigt stark an, da davon auszugehen ist, dass alle bestehenden und neu zu errichtenden Anlagen rasch mit 5G ausgerüstet werden sollen und deshalb für alle Anlagen in kurzer Zeit ein Baubewilligungsverfahren durchgeführt werden muss. Ebenfalls dürfte der Aufwand für die Bearbeitung von Einsprachen und Rekursen sowie Informations- und Beratungstätigkeit aufgrund des zunehmenden Widerstands der Anwohnenden ansteigen.

8.5.3.2 Zeitrahmen

Die notwendigen Arbeiten im Zusammenhang mit der Anpassung der NISV beanspruchen rund zwei Jahre. Es werden mit dieser Option nur wenige neue Anlagen benötigt (Verdichtung bei 50 % der heutigen Mikrozellen), und es erfolgt eine Nachrüstung fast aller bestehender Anlagen (inkl. Leistungserhöhungen). Damit wird der Zeitbedarf für einen vollständigen 5G-Ausbau auf 0 bis 10 Jahre geschätzt.
9 Mögliche Konzepte mit Blick auf zukünftige Entwicklungen

Die in Kapitel 8 beschriebenen Optionen zeigen auf, wie der Ausbau der Mobilfunknetze unter den geltenden Rahmenbedingungen oder durch Anpassungen der NISV in den nächsten Jahren vonstattengehen könnte, um in der Schweiz rasch eine flächendeckende 5G-Versorgung bereitzustellen. Die Entwicklung im Mobilfunk geht jedoch permanent weiter, das übertragene Datenvolumen wird weiter zunehmen und auch die Technologien werden sich weiterentwickeln. In der Forschung stellen sich Institute bereits heute die Frage, wie die Mobilfunktechnologie der sechsten Generation aussehen könnte. Allerdings sind die ersten Publikationen noch sehr generisch und zeichnen erst die Möglichkeiten der zu entwickelnden Technologiebausteine auf.

Im Hinblick auf die zukünftige Entwicklung stellt sich auch die Frage, wie rasch es geht, bis nach Umsetzung der in den Optionen enthaltenen Massnahmen ein erneutes Handeln erforderlich ist. Wie in Kapitel 4.1 dargestellt, wird auch in Zukunft eine Verdopplung der mobil übertragenen Datenmenge alle 12 bis 18 Monate erwartet. Es ist daher zu erwarten, dass der Gewinn an Kapazität, der durch den Zubau von Makrozellen oder einer allfälligen Erhöhung der Anlagengrenzwerte erreicht wird, innert weniger Jahre wieder aufgebraucht ist.

9.1 Förderung von Kleinzellen in Hybridnetzen durch verstärkte Zusammenarbeit zwischen Städten/Gemeinden und Mobilfunkbetreibern

9.1.1 Beschreibung

In Gebieten mit hohem Datenverkehr erfolgt bereits heute eine Verdichtung der Netze durch zusätzliche Antennen an neuen Standorten, um so neue Kapazitäten zu schaffen. In den Kapiteln 5.7 und 5.8 wurde gezeigt, dass sich damit auch die Gesamtexposition der Nutzerinnen und Nutzer reduzieren lässt. Hauptziel des vom SSV eingebrachten Konzeptes ist es, diese Entwicklung zu unterstützen, ohne die bestehenden Bestimmungen der NISV und der Vollzugsinstrumente anpassen zu müssen.

Eine auf urbane Verhältnisse zugeschnittene Netzarchitektur und -topologie kann dabei wie folgt ausgebaut werden:

- Die bestehenden Makrozellen werden prioritär zur Grundversorgung, insbesondere für Sicherheitsdienste, sich schnell bewegende Endgeräte und als Rückfallebene bei Störungen eingesetzt. Soweit es die Versorgungsqualität
verlangt und eine Versorgung durch Kleinzellen aus technischen Gründen nicht möglich oder unter wirtschaftlichen Gesichtspunkten unverhältnismässig ist, sollen neue Makroanlagen im Rahmen des Konzepts realisierbar bleiben.

- Kleinzellen werden als tragender Teil des Mobilfunkkonzepts eingebunden – dort, wo Makrozellen überlastet sind oder die Versorgung aus anderen Gründen ungenügend ist, und auch dort, wo hohe Datenmengen im öffentlichen Raum anfallen.
- Ein stärkerner Fokus wird auf die Trennung von Outdoor- und Indoor-Versorgung gelegt. Letztere kommt mit geringen Sendeleistungen aus und kann im Sinne der Eigenvorsorge zur Senkung der persönlichen Exposition abgeschaltet werden.
- Die Mitbenutzung der Kleinzellen durch alle Betreiber wird insbesondere für die feinmaschigen Kleinzellen aus Kostengründen und Gründen der Gleichbehandlung aller Anbieter bei einer PPP-Lösung angestrebt.

Städte und Gemeinden, die bereit sind, zusammen mit der Branche im Sinne einer PPP ein Mobilfunkkonzept zu entwickeln und dessen Umsetzung zu unterstützen, erhalten mit dieser Option ein Planungs- und Umsetzungsinstrument.

9.1.2 Bewertung

Im Rahmen einer PPP kann die Planung sofort gestartet werden, wofür ein gemeinsam entwickeltes Konzept die Basis bildet. Die Voraussetzung für eine PPP ist, dass sowohl die Stadt (oder die Gemeinde) und die Anbieter das Ziel einer qualitativ guten Versorgung mit 5G verfolgen. Die Definition «qualitativ gute Versorgung» wird von den Städten und Gemeinden in Zusammenarbeit mit den Anbietern erarbeitet und kann vom Anspruch einer Innenraumversorgung durch Basisstationen im Aussenraum abweichen.
Mit dem durch den Städteverband eingebrachten Konzept lässt sich die Netzstruktur im Sinne einer Langzeitentwicklung laufend dem Bedarf anpassen.

9.1.3 Exposition

Wie in Kapitel 5.8 gezeigt, resultiert aus einem Mobilfunknetz, das den Ausbreitungsverlust durch kleinere Zellen und zusätzliche Indoor-Abdeckung verringert, eine kleinere Gesamtexposition der Nutzer als aus einem grosszelligen Netz. Dank der kurzen Distanz zur nächsten Antenne wird die Exposition der Endgeräte im Aussenraum um das 2- bis 10-fache reduziert, bei einer zusätzlichen Innenraumversorgung um das 10- bis 600-fache. Für Nichtnutzer können die Immissionen um einen Faktor 1,6 (im Aussenraum) bis 10 (in versorgten Innenräumen) zunehmen. In nicht versorgten Innenräumen wird die Exposition für Nichtnutzer nicht zunehmen, hingegen werden die Mobiltelefone der Nutzer mit maximaler Leistung senden.

9.1.4 Umsetzung

Allenfalls muss über das FMG eine Rechtsgrundlage geschaffen werden, um die Mobilfunkbetreiber zur Kooperation zu verpflichten, falls sie sich nicht freiwillig an einer PPP beteiligen. Dabei müsste auch die Kooperation im Rahmen des vorgeschlagenen Mobilfunkkonzepts und für den Bau und Betrieb eines gemeinsamen Kleinzellennetzes geregelt werden. Eine Alternative wäre eine auf Freiwilligkeit basierende Branchenlösung, wobei auch hier die Konformität mit dem FMG und den Konzessionen geprüft werden muss (Infrastrukturwettbewerb).

In den Kantonen ist eine Anpassung der Baugesetzegebung erforderlich, in den beteiligten Städten und Gemeinden ein Legislativauftrag zur Umsetzung der Option im Sinne einer PPP. Für die Städte und Gemeinden ergibt sich ein Mehraufwand, wenn sie aktiv in die Netzplanung und Standortsuche für Kleinzellen eingebunden werden. Ein Mehraufwand ergäbe sich wahrscheinlich auch durch die vermehrte Informations- und Beratungstätigkeit, die Gemeinden und Städte selbst leisten müssten.

9.2 Trennung von Innen- und Aussenversorgung

9.2.1 Beschreibung
In den Kapiteln 5.7 und 5.8 wurde gezeigt, dass die Exposition durch Mobilfunk am stärksten minimiert werden kann, wenn die Signale über Glasfaser intelligent möglichst nahe an den Endkunden geführt werden und die Reststrecke durch die Luft möglichst kurz und hindernisfrei ist. Das von den Ärztinnen und Ärzten für Umweltschutz (AefU) eingebrachte Konzept sieht daher eine konsequente Trennung der Versorgung von Außen- und Innenräumen vor, um die Exposition der Bevölkerung gegenüber heute sogar zu verringern. Ein regulatorisches Mittel, um diese Entwicklung zu fördern, könnte eine Senkung des AGW für Mobilfunk auf 0,6 V/m sein. Dabei soll die Anwendung des AGW auch auf Kleinzellen (<6 W ERP) und Anlagen, die nur temporär senden, erweitert werden.

9.2.2 Bewertung
Die vorgeschlagene Trennung der Außen- und Innenversorgung bedingt einen grundlegenden Umbau der heutigen Mobilfunkversorgungskonzepte. Denn bei allen Sendern, die heute an Orten mit empfindlicher Nutzung (OMEN) eine Feldstärke nahe beim Grenzwert erzeugen, muss die Leistung um einen Faktor 100 reduziert werden, die Antenne erhöht oder deren Abstrahlwinkel verändert werden. Die Empfangsqualität des heutigen Mobilfunknetzes wird dadurch stark abnehmen, und eine Steigerung der Versorgungsqualität gemäss ITU IMT-2020 ist nicht möglich.

9.2.3 Exposition
Bei einer nur auf Aussenversorgung ausgelegten Funkzelle kann die Sendeleistung reduziert werden, weil weniger Distanzen und dämpfende Hindernisse überwunden werden müssen. Damit wird die Exposition durch den Downlink im Freien reduziert und auch die Belastung der Antennenanwohnenden gesenkt.

In Gebäuden kann die Downlink-Exposition höher sein als heute, weil sich zahlreiche kleine Antennen nahe bei den Menschen befinden. Durch eine bedarfsgerechte Steuerung (wie bei Schnurlostelefon-Basisstationen) und optimierte Platzierung der Basistationen lässt sich die Downlink-Exposition auch im Innenraum tief halten.

Bei der Benützung des Mobiltelefons im Freien nimmt die Exposition durch den Uplink ab, wenn die Funkstrecke zwischen Telefon und Basisstation kürzer wird und weniger dämpfende Hindernisse überwunden bzw. durchdrungen werden müssen. Auch im versorgten Innenraum ist der durchschnittliche Uplink geringer als heute, und Situationen mit maximaler Leistung durch schlechten Empfang sind seltener. In einem nicht versorgten Innenraum wird es praktisch nicht möglich sein, mobil zu telefonieren. Bei schlechtem Signal im Innenraum wie auch draussen wird das Mobiltelefon mit maximaler Leistung senden, was eine höhere Exposition der Nutzer zur Folge hat.

9.2.4 Umsetzung

Die Senkung des Anlagegrenzwertes auf 0,6 V/m und die Erweiterung seines Anwendungsbereichs auf Kleinanlagen sowie auf nur temporär sendende Anlagen erfordert eine Anpassung der NISV, was in den Verantwortlichkeitsbereich des Bundesrates fällt.

Im Vollzug wird der Aufwand der Behörden aufgrund der grossen Anzahl der neuen zu kontrollierenden Außenanlagen drastisch ansteigen. Bei den Anlagen im Inneren von Gebäuden, beispielsweise in Mietwohnungen, bestehen offene Fragen (z. B. Installationen gegen den Willen der Mieter, Kostentragung, Prüfung und Kontrolle, Aufwand der Messfirmen und Eignung der heutigen Messmittel).
10 Begleitende Massnahmen

Neben den Optionen mit direkten Auswirkungen auf die Netze und die Exposition der Bevölkerung mit NIS hat die Arbeitsgruppe begleitende Massnahmen entwickelt, die ohne direkte Auswirkungen auf Netze oder Exposition bleiben. Diese Massnahmen können grundsätzlich mit allen Optionen verbunden werden. Ihre Bewertung folgt deshalb anderen Kriterien als jene der Optionen. Die Arbeitsgruppe hat folgende Stossrichtungen und Massnahmen entwickelt:

- Vereinfachungen und Harmonisierungen im Vollzug (Kap. 10.1)
- Monitoring der Exposition und der Gesundheitsauswirkungen (Kap. 10.2)
- Information und Sensibilisierung der Bevölkerung (Kap. 10.3)
- Förderung der Forschung im Bereich Mobilfunk und Gesundheit (Kap. 10.4)
- Umweltmedizinische NIS-Beratungsstelle (Kap. 10.5)
- Austauschplattform «Mobilfunk der Zukunft» (Kap. 10.6)

10.1 Vereinfachungen und Harmonisierungen im Vollzug

10.1.1 Beschreibung

Die Evaluation zeigte, dass die folgenden Massnahmen umgesetzt werden sollten:

- Verbesserung der Reproduzierbarkeit und der Vergleichbarkeit von Berechnung und Messung der Strahlung sowie eine realistischere Berechnung/Prognosemöglichkeit der Strahlenbelastung
- Digitalisierung der Dokumentation und des Datenaustausches im Rahmen der Bewilligungsverfahren für Mobilfunkantennen (u. a. elektronische Files, Fotodokumentationen, Koordinaten, 3D-Gebäudemodelle, gültige Antennendiagramme)
- Automatisierter Abgleich und Erweiterung der NIS-Datenbank. Die Datenbank soll besser auf die Bedürfnisse der Vollzugsbehörden in Bezug auf einfachere respektive automatisierte Kontrollen von Mobilfunkanlagen angepasst werden. Auch sollte sie um die Möglichkeit zur Implementierung der 5G-Technologie erweitert und in Bezug auf Performance und Stabilität verbessert werden.
- Nicht-Berücksichtigung von leeren Parzellen bei Bewilligungen
- Überprüfung der Bagatellkriterien der BPUK-Empfehlung Mobilfunk
- Reduktion des Aufwands für die Erstellung und Prüfung der Standortdatenblätter unter Vermeidung von Abstrichen hinsichtlich der Transparenz
- Prüfung, wieweit der Aufwand bei Abnahmemessungen und Betriebkontrollen reduziert werden kann

10.1.2 Kosten und Finanzierung

10.1.3 Erwarteter Nutzen

10.1.4 Umsetzung

10.1.4.1 Zuständigkeit
Die Umsetzung der Massnahmen bezüglich Standortdatenblatt, Abnahmemessungen und Bearbeitungen von Einsprüchen muss in der NISV, der Vollzugshilfe und der NIS-Datenbank erfolgen (BAFU und BAKOM). Die Vollzugshilfemittel müssen vom Bund aktualisiert werden.

Die baurechtlichen Vereinfachungen im Vollzug (BPUK-Empfehlung Mobilfunk) sind Sache der Kantone. Die BPUK hat dazu bereits eine Arbeitsgruppe eingesetzt.

10.1.4.2 Aufwand der Behörden
Die Änderung der bestehenden Grundlagen und Verfahren wird initialen Mehraufwand auslösen. Danach sollte der Aufwand insbesondere im Vollzug der Kantone sinken.

10.1.4.3 Zeitrahmen

Die BPUK prüft derzeit in einer Arbeitsgruppe Vereinfachungen im Vollzug.
10.1.4.4 Rechtliche Anpassungen
Es besteht noch keine abschliessende Übersicht, welche Anpassungen an den Rechtsgrundlagen sich allenfalls auf kantonaler Stufe oder beim Bund aufgrund der Überprüfungen als nötig erweisen sollten. Grundsätzlich können wichtige Klärungen, Vereinfachungen und Harmonisierungen innerhalb des geltenden Bundesrechts realisiert werden.

10.1.5 Fazit
Vereinfachungen und Harmonisierungen im Vollzug sind nötig und werden teilweise auch bereits umgesetzt und können grundsätzlich innerhalb des geltenden Bundesrechts realisiert werden.

10.2 Monitoring der Exposition
10.2.1 Beschreibung

Das Bundesamt für Umwelt hat daraufhin mehrere Studien in Auftrag gegeben, um die Machbarkeit eines NIS-Monitorings abzuklären und ein Konzept erarbeiten zu lassen. Diese Grundlagenarbeiten zeigten, dass ein gesamtschweizerisches NIS-Monitoring, das repräsentative Aussagen über die Exposition der Bevölkerung liefert, zwar anspruchsvoll, aber grundsätzlich machbar ist.

Im Dezember 2015 hat der Bundesrat ein Konzept für ein Monitoring elektromagnetischer Felder beschlossen. Dieses Konzept sieht vier Module vor:

 - Innenbereich von Wohnungen, differenziert nach denselben Typen von Wohnlagen.
 - Fahrgastbereich in öffentlichen Verkehrsmitteln.

- Berechnung der Immissionen, die durch Infrastrukturanslagen im Aussenraum verursacht werden (Hochspannungsleitungen, Mobilfunk-, Rundfunksendeanlagen etc.): Immissionsberechnungen können für die Strahlung der Mobilfunk- und Rundfunkanlagen vergleichsweise rasch gemacht werden, da bereits ein vollständiger und aktueller Anlagekataster vorhanden ist. Es ist eine flächendeckende Modellierung mindestens für das Siedlungsgebiet anzustreben. Zu modellieren sind die zeitlich gemittelten Immissionen im Aussenraum, insbesondere an den Fassaden von Gebäuden, in denen sich Menschen während längerer Zeit aufhalten.

- Zusammenführen von kantonalen und kommunalen ortsfesten Immissionsmessungen in eine zentrale Plattform: Ortsfeste Messungen werden bereits von einigen Kantonen und Gemeinden durchgeführt. Diese reichen zwar für die angestrebte repräsentative Aussage über die Exposition der ganzen Bevölkerung nicht aus, liefern jedoch wertvolle Zusatzinformationen über die Schwankungen der Immissionen im Tages- und Wochenverlauf und können für die Validierung der Immissionsberechnungen herangezogen werden.

- Fallstudien zur Exposition der Nutzer durch körpennah betriebene Geräte: Eine repräsentative Erfassung der Exposition der Nutzer durch körpennah betriebene, emittierende Geräte ist angesichts der Vielfalt von Geräten und
Nutzungsbedingungen nicht zu leisten. Für eine ganzheitliche Aussage sollte der Anteil körpernah betriebener Geräte an der Gesamtexposition jedoch nicht gänzlich ausgeklammert werden. An die Stelle von repräsentativen Erhebungen und Modellierungen können Fallstudien treten, um die im Körper wirksame Strahlung bei definierten, typischen Nutzungen zu bestimmen. Im Vordergrund des Interesses stehen dabei vorerst die Endgeräte der Mobilkommunikation.

Mit der Revision der NISV vom 17. April 2019 wurde dem BAFU als Umweltfachstelle des Bundes ausdrücklich die Aufgabe zugewiesen, ein solches NIS-Monitoring aufzubauen, wobei nach den Vorgaben des USG auch die Ergebnisse der wissenschaftlichen Forschung und das Erfahrungswissen zu gesundheitlichen Auswirkungen laufend erfasst und bewertet werden sollen.

10.2.2 Kosten und Finanzierung
Die Kosten des Monitorings insgesamt belaufen sich auf rund 1 Million Franken, verteilt über die ersten drei Jahre, und zusätzlich ist mit wiederkehrenden Kosten von rund 500 000 Franken pro Jahr zu rechnen. Die Kosten sind bereits finanziert.

10.2.3 Erwarteter Nutzen

10.2.4 Umsetzung

10.2.4.1 Zuständigkeit
Die Aufgabe obliegt gemäss Artikel 19b NISV dem BAFU.

10.2.4.2 Aufwand der Behörden
Für den finanziellen Aufwand siehe Kapitel 10.2.2.

10.2.4.3 Zeitrahmen
Erste belastbare Resultate werden frühstens im Jahr 2022 vorliegen.

10.2.4.4 Rechtliche Anpassungen
Die Rechtsgrundlagen liegen vor.
10.2.5 Fazit

10.3 Information und Sensibilisierung der Bevölkerung

10.3.1 Beschreibung

Unter «Information und Sensibilisierung» werden verschiedene Massnahmen zusammengefasst, welche der besseren Information der Bevölkerung dienen sollen. Ziel ist es, mit einer aktuellen, transparenteren Information über die Mobilfunkantennen und deren Betriebsparameter die Bevölkerung sachlich zu informieren und damit unter anderem die Vollzugsbehörden und Mobilfunkbetreiber von einzelfallweisen Auskünften zu entlasten. Heikel ist dabei die Wahrung des Geschäftsgeheimnisses der Mobilfunkbetreiber. Darauf ist bei der Zugänglichmachung der Information zu achten. Insbesondere soll Folgendes geprüft werden:

- Darstellung von modellierten Immissionen des elektrischen Feldes von Sendeanlagen in einem der Bevölkerung zugänglichen Online-Kataster (nicht so detailliert, dass eine unrealistische Berechnungsgenauigkeit suggeriert wird).

- Broschüre

10.3.2 Kosten und Finanzierung

Die Aktualisierung des Leitfadens Mobilfunk für Gemeinden und Städte müsste von allen bisherigen Trägern mitfinanziert werden. Für den Bund ergäben sich damit tragbare Kosten.

Die Kosten für effektive und zielgruppenspezifische Informations- und Sensibilisierungsmassnahmen bzw. für eine Informationskampagne müssten noch abgeschätzt werden. Je nach Ausgestaltung (Durchdringung der Bevölkerung,
Dauer) sind die Kosten erfahrungsgemäß relativ hoch, wobei sie aber aus den Erträgen der Vergabe von Mobilfunklizenzen finanziert werden sollten.

10.3.3 Erwarteter Nutzen

Bei der Bevölkerung könnte die transparente Information über Mobilfunkanlagen die Akzeptanz der Anlagen (und die Glaubwürdigkeit der Behörden) erhöhen. Die Behörden und Betreiber würden ausserdem entlastet von der Zusammenstellung von Unterlagen für die Beantwortung von Anfragen. Der Nutzen einer erhöhten Transparenz hängt allerdings davon ab, ob der Öffentlichkeit verständlich dargelegt werden kann, welche Informationen aus den gezeigten Daten erkennbar sind (wie z. B. die Zusammenhänge zwischen Distanz, Sendeleistung und Immissionen) und welche nicht.

Der Austausch von Daten zwischen einem Online-Kataster und den kantonalen Bewilligungsverfahren würde die Information und Sensibilisierung erleichtern, da alle Daten schon elektronisch vorhanden sind. Zu bedenken ist auch, dass Mitbewerber (Mobilfunkbetreiber) den Kataster nutzen könnten, um Einsicht in Netzplanung, Versorgungsqualität oder zu Strategien zu erhalten.

Mit der Aktualisierung des Leitfadens Mobilfunk für Gemeinden und Städte werden den Kommunen die Instrumente mitgegeben, mit denen sie Gesuche speditiv behandeln können.

Informations- und Sensibilisierungsmassnahmen zum Thema Mobilfunk und Gesundheit tragen dazu bei, Wissenslücken zu schliessen, erlauben faktenbasierte Entscheide und ermöglichen der Bevölkerung eigenverantwortliches Verhalten.

10.3.4 Umsetzung

Die Machbarkeit eines Online-Katasters ist ebenso zu prüfen wie die Möglichkeiten, Informationen zur Verfügung zu stellen (z. B. im Rahmen einer Informationskampagne).

Die Aktualisierung des Leitfadens Mobilfunk für Gemeinden und Städte ist von der BPUK bereits angeregelt worden. Sofern die Finanzierung zustande kommt, wird das Projekt nach Abschluss der Arbeiten der Arbeitsgruppe Mobilfunk und Strahlung und allfälliger Folgearbeiten frühestens ab 2020 an die Hand genommen.

10.3.4.1 Zuständigkeit

Der Leitfaden Mobilfunk für Gemeinden und Städte wird unter der Federführung der BPUK von Gemeinden, Kantonen und Bund gemeinsam aktualisiert.

10.3.4.2 Aufwand der Behörden

Die Aufwendungen an Zeit oder Geld für die Aktualisierung der BAKOM-NIS-Datenbank, den Aufbau eines Online-Katasters oder die Finanzierung einer Informationskampagne können zurzeit nicht abgeschätzt werden.

Die Aktualisierung des Leitfadens Mobilfunk für Gemeinden und Städte wird mit vergleichsweise geringem Aufwand möglich sein.
10.3.4.3 Zeitrahmen

10.3.4.4 Rechtliche Anpassungen
Allenfalls ist für den Austausch von Daten und für eine Informationskampagne eine Rechtsanpassung notwendig. Dies wäre noch zu prüfen. Ansonsten bestehen die Rechtsgrundlagen für die Aufgaben.

10.3.5 Fazit
Information ist wichtig zur Versachlichung der Diskussion. Es ist dabei aber essenziell, diese Information für die Bevölkerung verständlich zu kommunizieren. Damit würden die Informationen aus dem Monitoring sinnvoll ergänzt. Eine Informationskampagne müsste sorgfältig geplant werden, um einen positiven Effekt zu erzielen, und sie sollte nur angegangen werden, wenn die Finanzierung auch langfristig sichergestellt ist. Die Überarbeitung des Leitfadens Mobilfunk für Gemeinden und Städte ist 2020 anzustreben.

10.4 Förderung der Forschung im Bereich Mobilfunk und Gesundheit

10.4.1 Beschreibung

- Es gibt bereits viele Studien zu den biologischen Wirkungen von HF-NIS unterhalb von 6 GHz, aber noch deutlich weniger zu den Millimeterwellen. Studien sollten also klären, ob diese Frequenzen andere biologische Effekte haben.

- Noch nicht restlos geklärt ist die Frage, wie relevant die Signalcharakteristik (z. B. Modulation) in allen vom Mobilfunk genutzten Frequenzbereichen ist. Anhand von experimentellen Ansätzen kann diese Fragestellung systematisch angegangen werden. Auch bei Expositions- und beobachtenden Studien sollten nicht nur die Mittelwerte (z. B. SAR-Werte), sondern auch andere Metriken, welche die Wellenform charakterisieren, evaluiert werden.

Neben Bevölkerungsstudien ist auch eine vertiefte Abklärung von Personen denkbar, welche Gesundheitsprobleme auf NIS zurückführen. Im Rahmen einer interdisziplinären umweltmedizinischen NIS-Fachstelle könnten EHS-Einzelfälle vertieft abgeklärt und systematisch dokumentiert werden. Damit liessen sich allenfalls Phänomene entdecken und beschreiben, die in Bevölkerungsstudien im statistischen Rauschen untergehen und die neue Hypothesen für zukünftige Forschung liefern könnten. Neben dem möglichen Wissensgewinn wäre eine solche Beratungsstelle auch ein wichtiges Hilfsangebot für Betroffene. Es könnten dabei auch neue Behandlungsmethoden erprobt werden.

Ein zukünftiger Forschungsbedarf kann sich auch bezüglich der optischen Strahlung von Displays heutiger und künftiger Endgeräte ergeben, und zwar zu den Auswirkungen auf die Gesundheit der Augen insgesamt, die Gesundheit der Retina im Speziellen und auf die zirkadianen Rhythmen der Nutzerinnen und Nutzer.

Grundsätzlich kann mit Forschungsprojekten flexibel und rasch auf neue Erkenntnisse reagiert werden, sodass hier keine detaillierten Empfehlungen zu weiteren Fragestellungen gegeben werden. Im Vordergrund stehen Wirkungen auf die Entstehung von Krebs, Neurodegeneration, unspezifischen Symptomen und der Fortpflanzung sowie ein besseres Verständnis zu Einflüssen auf die Hirnphysiologie, kognitive Funktionen und weitere Körperfunktio-

Forschung zu NIS kann im Rahmen eines Forschungsprogramms koordiniert und gesteuert werden, wie dies in der Schweiz schon gemacht wurde (NFP 57) und zurzeit in Deutschland und Frankreich gemacht wird, oder über gezielt definierte Forschungsaufräge. Dabei lohnt es sich, Synergiepotenziale zum Beispiel mit der an der ETHZ domizilierten Forschungsstiftung Strom und Mobilkommunikation (FSM), mit einem umweltepidemiologischen Kompetenzzentrum wie dem Schweizerischen Tropen- und Public Health-Institut (Swiss TPH) sowie mit universitären Instituten für Hausarztmedizin zu prüfen, da hier auf bestehende Organisationen und ihr Netzwerk zurückgegriffen werden kann.

stellt sich die Frage, ob eventuell andere Zelltypen mit ähnlicher Herkunft und Eigenschaften wie zum Beispiel die Melanozyten sensitiv auf HF-NIS reagieren können. Melanozyten, welche zum Melanom entarten können, stammen ebenfalls von der gleichen Vorstufenzelle ab und könnten im Hinblick auf die Exposition durch höhere Frequenzen relevant sein.

10.4.2 Kosten und Finanzierung

Die Kosten für ein sinnvolles Forschungsvorhaben belaufen sich auf mehrere Hunderttausend Franken. Damit die Forschungsförderung eine signifikante Wirkung erzielt, müssten entsprechend hohe Mittel vorgesehen werden.

Gemäss Artikel 39a FMG können Mittel aus dem Erlös der Konzessionsgebühren für die Forschung im Bereich nichtionisierende Strahlung eingesetzt werden. Diese Forschungsförderung ist zu intensivieren.

10.4.3 Erwarteter Nutzen

Solche Forschungsförderung wirkt sich mehrfach positiv aus: Sie schliesst wissenschaftliche Erkenntnislücken in einem politisch sensiblen Feld, sie dient als Frühwarnsystem für gesundheitliche Risiken, sie unterstützt als breit akzeptierte Begleit- und Vorsorgemaßnahme den Netzaufbau und die Kommunikation von Bund und Kantonen, und sie sichert die schweizerischen Forschungskompetenzen in einem sich enorm schnell entwickelnden Technologiebereich.

10.4.4 Umsetzung

10.4.4.1 Zuständigkeit

Die Entwicklung des Rahmens für die Forschungsförderung ist Sache der Bundesbehörden. Mit der Entwicklung und Koordination von Forschung im Bereich Mobilfunk und Gesundheit wäre eine forschungsnahe Institution zu beauftragen. Die Bundesbehörden sind für diese Aufgabe nicht optimal geeignet.

10.4.4.2 Aufwand der Behörden

Der Aufwand für die Schaffung des Rahmens ist personalintensiv. Danach würde der Aufwand bei den Behörden wieder sinken.

10.4.4.3 Zeitrahmen

Es ist mit einer Zeitspanne von mindestens einem Jahr zu rechnen, bis ein rechtlicher und finanzieller Rahmen sichergestellt wäre.

10.4.4.4 Rechtliche Anpassungen

Mit Artikel 39a FMG besteht eine Rechtsgrundlage für die Förderung von Forschung im Bereich Gesundheit und Mobilfunk. Wie weit diese Bestimmung in einer Verordnung zu konkretisieren wäre, müsste noch geprüft werden.

10.4.5 Fazit

Um den Wissenslücken im Bereich Mobilfunk und Strahlung entgegenzutreten, soll sich der Bund neben dem NIS- und dem Gesundheitsmonitoring auch nachhaltig an der wissenschaftlichen Abklärung von möglichen Strahlungsrisiken beteiligen. Das neue FMG hat für die Finanzierung die gesetzliche Grundlage geschaffen.
10.5 Umweltmedizinische NIS-Beratungsstelle

10.5.1 Beschreibung

Dabei soll der Hausarzt oder die Hausärztin erste Abklärungen vornehmen, und die Fachstelle führt auf Zuweisung des Hausarztes weitere vertiefte umweltmedizinische Abklärungen in alle Richtungen durch (z. B. Veranlassung spezialärztlicher Untersuchungen, Provokationsuntersuchungen, Abklärungen zu Hause oder am Arbeitsplatz). Das Angebot soll insbesondere auch eine interdisziplinäre Fallbesprechung umfassen.

Das Angebot soll in die Grundversorgung (Hausarzt/Tierarzt/Umweltfachstellen) einbezogen werden. Ein Vorschlag für die konkrete Umsetzung der Massnahme wurde im Bericht «Machbarkeitsstudie Gesundheitsmonitoring» vorgestellt.

10.5.2 Kosten und Finanzierung

10.5.2.1 Investition und Betrieb

10.5.2.2 Finanzierung

10.5.3 Erwarteter Nutzen

10.5.4 Umsetzung
Für die Realisierung einer umweltmedizinischen NIS-Beratungsstelle ist die Zusammenarbeit des Bundes mit einer geeigneten Institution, beispielsweise einem Universitätsspital, notwendig. Mit dieser Institution ist ein Leistungsauftrag zu formulieren, der das Angebot und die Berichterstattung über mehrere Jahre sichert.

10.5.4.1 Zuständigkeit
Die Leistungsbeschreibung, die Auswahl sowie die Finanzierung einer umweltmedizinischen NIS-Beratungsstelle ist federführend eine Aufgabe des BAFU. Beim Aufbau des Angebots ist eine Zusammenarbeit mit dem Bundesamt für Gesundheit BAG zu prüfen.

10.5.4.2 Aufwand der Behörden
Die Höhe der Kosten lässt sich derzeit nicht näher beziffern. Die entsprechenden Mittel können vom Bund im Rahmen der bestehenden Budgets geleistet werden. Der personelle Aufwand beim Bund dürfte bis zum Abschluss eines Leistungsauftrags erheblich sein, danach wird sich der Aufwand reduzieren. Er kann im Rahmen der bestehenden Ressourcen geleistet werden.

10.5.4.3 Zeitrahmen
Der Aufbau einer umweltmedizinischen NIS-Beratungsstelle dürfte ein bis zwei Jahre in Anspruch nehmen.

10.5.4.4 Rechtliche Anpassungen
Die Rechtsgrundlagen für den Aufbau einer umweltmedizinischen NIS-Beratungsstelle bestehen.

10.5.5 Fazit

10.6 Austauschplattform «Mobilfunk der Zukunft»
10.6.1 Beschreibung

10.6.2 Kosten und Finanzierung
Die Kosten einer Austauschplattform sind gering. Es handelt sich vor allem um Personalkosten.
10.6.3 Erwarteter Nutzen
Der direkte, persönliche Austausch am selben Tisch fördert das gegenseitige Verständnis und damit im Idealfall auch das gegenseitige Vertrauen. Im Hinblick auf kommende Entwicklungen wäre es möglich, so die Bevölkerung sachgerechter und frühzeitig über Risiken und Chancen zu informieren.

10.6.4 Umsetzung
10.6.4.1 Zuständigkeit
Die Verantwortung für eine Austauschplattform liegt beim Bund, insbesondere beim BAFU und beim BAKOM.

10.6.4.2 Aufwand der Behörden
Der personelle Initialaufwand kann mit den bestehenden Ressourcen geleistet werden.

10.6.4.3 Zeitrahmen
Mit der Plattform könnte nach den Arbeiten der Arbeitsgruppe begonnen werden.

10.6.4.4 Rechtliche Anpassungen
Die Rechtsgrundlagen für die Austauschplattform bestehen.

10.6.5 Fazit
Die Schaffung einer Austauschplattform «Mobilfunk der Zukunft» ist wichtig für das gegenseitige Verständnis und könnte eine der Funktionen der Arbeitsgruppe Mobilfunk und Strahlung weiterführen.
11 Empfehlungen

Die Mitglieder der Arbeitsgruppe haben ihre Kenntnisse und unterschiedlichen Interessen eingebracht und davon ausgehend Fakten zusammengetragen sowie nach Lösungen und Gemeinsamkeiten gesucht.

Die Arbeitsgruppe gelangt zu den folgenden Empfehlungen an das UVEK:

- Die Entscheide im Hinblick auf die Weiterentwicklung des Mobilfunks in der Schweiz können auf die in den Kapiteln 1 bis 7 dargelegten Fakten und Prognosen abgestützt werden.
- Die unter Kapitel 8 (Optionen) eingebrachten Vorschläge sind zur Kenntnis zu nehmen.
- Die unter Kapitel 9 (Mögliche Konzepte mit Blick auf zukünftige Entwicklungen) eingebrachten Vorschläge sind zur Kenntnis zu nehmen.
- Die begleitenden Massnahmen (Kap. 10) sollen umgesetzt werden.
- Der Dialog mit den Stakeholdern, wie er in der Arbeitsgruppe begonnen wurde, soll mit Blick auf kommende Weiterentwicklungen im Bereich Mobilfunk zeitnah weitergeführt werden (vgl. Kap. 10.6).
- Der am 28. September 2018 erteilte Auftrag ist abzuschliessen und die Arbeitsgruppe Mobilfunk und Strahlung aufzulösen.

Im Weiteren erscheint es der Arbeitsgruppe angezeigt, die Prozesse beim Bund im Hinblick auf die nächste Konzessionsnierung von Frequenzen für Fernmeldedienste proaktiv zu überprüfen. Hierbei sollte frühzeitig berücksichtigt werden, welche Auswirkungen die neuen Frequenzen insbesondere auf die Exposition der Bevölkerung mit nichtionisierender Strahlung und auf die Aufgabenerfüllung der Kantone und Gemeinden mit sich bringen können. Zur Unterstützung der Bewilligungsbehörden bei ihrer Arbeit sind die zur Bewilligung von Anlagen notwendigen Instrumente, Prozesse und Methoden zeitnah zur Verfügung zu stellen.
Anhang 1: Geprüfte Massnahmen

Die Arbeitsgruppe hat die folgenden 57 Einzelmassnahmen und ein Massnahmenpaket (Nr. 58) geprüft und thematisch gruppiert. Die Massnahmen bildeten sodann die Grundlage für die Ausarbeitung der Optionen (vgl. Kapitel 8).

<table>
<thead>
<tr>
<th>Thema</th>
<th>Nr.</th>
<th>Massnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzstruktur</td>
<td>01</td>
<td>Reduktion alter Netze (GSM-Einheitsnetz / UMTS abschalten)</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>Netzmonopol</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>Trennung zwischen Industrie- und Consumer-Nutzung von 5G</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>Hybridnetz auf der Basis eines zwischen Branche und Stadt/Gemeinde entwickelten Mobilfunkkonzepts</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>Immissionsoptimierter Netzausbau in Zusammenarbeit Betreiber–lokale Behörden (kantonal/kommunal)</td>
</tr>
<tr>
<td></td>
<td>06</td>
<td>Versorgung von kleinen Siedlungen, Siedlungsteilen, Siedlungsändern mit Basisstationen ausserhalb Baugebiet (Zonenkonformität Anlagen)</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>Trennung von Indoor- und Outdoor-Versorgung</td>
</tr>
<tr>
<td></td>
<td>08</td>
<td>Trennung der Innen- und Aussenversorgung, strahlungsarme Kommunikationsinfrastruktur in Innenräumen und AGW von 0,6 V/m</td>
</tr>
<tr>
<td>Bagatellschwelle vorsorgliche Emissionsbegrenzung (Anh. 1 Ziff. 61 NISV)</td>
<td>09</td>
<td>Kleinsendeanlagen <6 W ERP sind auch dem AGW zu unterstellen</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Änderung der Limite für Mikrozellen (Bagatellschwelle auf 50 W erhöhen)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Kleinzellen mit einer Leistung ≤100 W ERP ohne NIS-Berechnung und mit vereinfachter Bewilligung</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Erhöhung Bagatellschwelle situationsabhängig oder für Baubewilligungsverfahren (differenziert nach W ERP)</td>
</tr>
<tr>
<td>Anlagedefinition (Anh. 1 Ziff. 62 NISV)</td>
<td>13</td>
<td>Neue Definition der Anlage (1 Anlage pro Betreiber)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Anlagedefinition anpassen (nur noch gleiches Dach / <6 W nicht berücksichtigen)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Anpassung der Definition von Anlage- und Einspracheperimeter</td>
</tr>
<tr>
<td>Massgebender Betriebszustand (Anh. 1 Ziff. 63 NISV)</td>
<td>16</td>
<td>Neue Definition des massgebenden Betriebszustandes (Tagesmittel)</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Anpassung des massgebenden Betriebszustandes für eine Mittelwertmethode im Betrieb und bei Messungen</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Zeitliche Mittelwertbildung der Sendeleistung als Bewertungsgrundlage</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Keine Minderung des Schutzniveaus (Beibehaltung massgebender Betriebszustand und Anlagegrenzwert)</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Bewertungsmethode für adaptive Antennen (massgebender Betriebszustand für adaptive Antennen)</td>
</tr>
<tr>
<td>Anlagegrenzwert (Anh. 1 Ziff. 64 NISV)</td>
<td>20</td>
<td>Anlagegrenzwert (AGW) vereinheitlichen (Basis: bestehende AGW)</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Erhöhung des AGW auf 20 V/m</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Erhöhung des Anlagegrenzwertes AGW auf 11,5 V/m, kombiniert mit Neudefinition der Anlage</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Anlagegrenzwert aufheben</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Keine Minderung des Schutzniveaus (Beibehaltung massgebender Betriebszustand und Anlagegrenzwert)</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Trennung der Innen- und Außenversorgung, strahlungsarme Kommunikationsinfrastruktur in Innenräumen und AGW von 0,6 V/m</td>
<td></td>
</tr>
<tr>
<td>Vollzug NISV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Etablierung einer Messempfehlung für 5G-Mobilfunk-Basisstationen</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Harmonisierung des Vollzugs der NISV und der Vollzugsempfehlungen</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Überarbeitung der Vollzugsempfehlung zur NISV</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Verzicht auf mehrfach kumulierte Worst-Case-Betrachtungen in den Ausführungsbestimmungen</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Verbesserung der Reproduzierbarkeit und der Vergleichbarkeit von Berechnung und Messung durch räumliche Mittelwertmessungen mit Messrobotern (realitätsnahe Expositionsbestimmung)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Periodische Überprüfung von Ergebnissen aus dem NIS-Monitoring und Korrektur von Berechnungs- und Messmethoden</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Anpassung Leitfaden Mobilfunk für Gemeinden und Städte</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3D-Gebäudemodell verwenden</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Leere Parzellen nicht berücksichtigen</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Unschärfe bei der Berechnung der Strahlenbelastung erlauben</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Zulässige Betriebsparameter nach Abnahmemessung festlegen</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Mehr Freiheit bei der Anordnung von Messungen</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Kleinere Vereinfachungen Unterlagen Bewilligungsprozess</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Umweltrechtliche Prüfung von Baubewilligung entkoppeln</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Definition des Einspracheperimeters</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Anpassung der Definition von Anlage- und Einspracheperimeter</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Definition von Bagatellfällen erweitern (für Änderungen)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Strahlenbelastung an OMEN genauer berechnen</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Keine Verpflichtung der Anwohner zur Duldung einer Abnahmemessung</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Abgleich in BAKOM-Datenbank automatisieren</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>BAKOM-Datenbank erweitern (Antennenhistorie und -diagramme hinterlegen)</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Bewilligung durch zentrale Stelle (z. B. beim Bund)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Anpassungen an der BAKOM-NIS-Datenbank</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Chancen der Digitalisierung nutzen</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Online-Kataster</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Kleinsendeanlagen <6 W ERP sind auch dem AGW zu unterstellen (Keine Bewilligungspflicht, abschreckende Bussen)</td>
<td></td>
</tr>
<tr>
<td>Arbeitsgruppe Mobilfunk und Strahlung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bewilligung und Standortsuche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Vereinfachung Bewilligungsverfahren</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Mitbenutzung von Basisstationen und Infrastrukurelementen</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Förderung der Verfügbarkeit von öffentlichen Liegenschaften für den Mobilfunkausbau</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Unterstellung von Mobilfunkanlagen unter das Mietrecht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Begleitende Massnahmen Gesundheit und Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
</tbody>
</table>
Anhang 2: Parlamentarische Vorstösse

Der Bundesrat hat am 25. Februar 2015 einen Bericht in Erfüllung der Postulate Noser (12.3580; «Zukunftstaugliche Mobilfunknetze») und FDP-Liberale Fraktion (14.3149; « Weniger Mobilfunkantennen dank Verbesserung der Rahmenbedingungen») verabschiedet:

- **Zukunftstaugliche Mobilfunknetze** (PDF, 471 kB, 24.02.2015)
- **Situationsanalyse/Auslegeordnung** (PDF, 901 kB, 24.02.2015)

Der Bericht diente in der Folge als Grundlage für die Beratungen im Parlament. Im Januar 2017 erstellten die Bundesämter für Kommunikation (BAKOM) und für Umwelt (BAFU) zuhanden der Kommission für Verkehr und Fernmeldewesen des Ständerates (KVF-S) zusätzlich noch den Bericht «Entwicklungen im Bereich Mobilfunk», welcher die Entwicklungen seit der Publikation des Berichts «Zukunftstaugliche Mobilfunknetze» darstellte.

Aufgrund dieser Ausgangslage hat Frau Bundesrätin Doris Leuthard im September 2018 die Arbeitsgruppe Mobilfunk und Strahlung eingesetzt. Während die Arbeitsgruppe tätig war, sind verschiedene Vorstösse zur Arbeitsgruppe, zu 5G und zu den Auswirkungen von nichtionisierender Strahlung auf den Menschen und die Umwelt eingereicht worden:

- **18.4147 Ip. Hardegger**: Arbeitsgruppe Mobilfunk und Strahlung. Auftrag und Zusammensetzung der Arbeitsgruppe
- **19.3089 Ip. Hardegger**: Mobilfunk: 5G und gesundheitliche Risiken
- **19.3133 Ip. Munz**: Wer trägt das Risiko der Gesundheitsschäden durch die 5G-Technologie?
- **19.3200 Ip Glauser**: Nichtionisierende Strahlung: Gesundheit und Verantwortung
- **19.3264 Ip. Häberli-Koller**: Mobilfunk: Arbeitsgruppe UVEK
- **19.3260 Ip. Semadeni**: Phonegate: Handy-Nutzer korrekt informieren
- **19.3340 Ip. Friedl**: Forschungsbedarf zu Auswirkungen von elektromagnetischen Feldern auf Tiere und Pflanzen
- **19.3431 Ip Fiala**: Wirtschaftliche Vorteile und gesundheitliche Folgen von 5G?
- **19.3505 Ip. Töngi**: Vergabe von Mobilfunkkonzessionen für 5G ohne entsprechende Grundlagen für die Bewilligungsbehörden
- **19.3524 Ip. Borloz**: 5G: Wenn eine Arbeitsgruppe die Auswirkungen der Strahlung in der Schweiz untersucht, ist die Unabhängigkeit der Gruppenmitglieder mindestens ebenso wichtig wie deren Kompetenzen
• 19.3635 Ip. Gschwind: Einführung der 5G-Technologie in der Schweiz: Welche Kompensation vom Bund angesichts des Mehraufwands für die Kantone?
• 19.3609 Ip. Hardegger: Planungskompetenzen im Mobilfunkbereich und Risikotragung
• 19.3696 Ip. Munz: Informationspflicht des BAG bezüglich nichtionisierender Strahlung NIS
• 19.4043 Po. Häberli-Koller: Nachhaltiges Mobilfunknetz
• 19.4073 Mo. Graf-Litscher: Forschungsförderung Mobilfunk und Strahlung
• 19.4246 Ip. Hardegger: Weiterhin offene Fragen zu adaptiven Antennen und Expositionsspitzen
• 19.1025 Anfrage Reimann: Ursachen für die Abnahme der globalen Biodiversität: Warum kein Hinweis auf die zunehmende Strahlenbelastung?
• 19.5033 FR Estermann: Mobilfunkstandard 5G als «Bagatelländerung»?
• 19.5274 FR Regazzi: 5G-Technologie. Informieren und erklären, um einige verbreitete Vorurteile zu entkräften / Tecnologia 5G. Informare e spiegare per superare alcuni pregiudizi presenti nella popolazione
• 19.5286 FR Schneider Schüttel: 5G-Antennen – welche Grenzwerte gelten?
• 19.5349 FR Bigler: 5G – wie weiter?
• 19.5355 FR Brunner: 5G: Verspätung und Kosten für die Wirtschaft?
Anhang 3: Mandate und Mitglieder
Untergruppen und Kerngruppe

Untergruppe 1: Datenverkehr und Standortwahl

Mandat

1. Themenkreis: Datenvolumen
 • Datenverkehr, insbesondere gegenwärtige Entwicklungen seit Bericht 2015:
 - Situation heute: Ausschöpfungsgrad des Anlagegrenzwertes, Reserven und Potenzial der bestehenden Netze und Anlagen
 - Situation morgen: Bedürfnisse und Notwendigkeiten im Hinblick auf zukünftige Entwicklungen, insbesondere 5G

2. Themenkreis: Netzstruktur
 • Zukünftige Bedürfnisse und Strategien bezüglich der Weiterentwicklung der Netzstrukturen zur Bewältigung der Nachfrage und zur Sicherstellung des Vorsorgeprinzips
 • Definition von zwei bis drei typischen Netztopologien

3. Themenkreis: Standortsuche für Antennen
 • Darlegung der Herausforderungen der Netzbetreiber bei der Sicherung von Standorten für Antennen
 • Rolle der Behörden in diesem Prozess

4. Themenkreis: Verhältnis Datenvolumen und Exposition
 • Technische und betriebliche Möglichkeiten, um zunehmende Datenvolumen möglichst ohne zunehmende Exposition der Bevölkerung zu übertragen.

Mitglieder

• Robert Badertscher, Projektleiter Connectivity, Schweizerische Bundesbahnen SBB (Stv. Robert Gisler, Techniker TS Telekommunikation, Projektmanager Rollout GSM-R, SBB)
• Valentin Delb, Abteilungsleiter, AWEL Kanton Zürich, Delegierter KVU
• Markus N. Durrer, Elektro- und VDI Hygiene A Ingenieur, Freiberuflicher Experte IBH, Technischer Berater der AefU
• Christian Grasser, Geschäftsführer, Schweizerischer Verband der Telekommunikation asut
• Philippe Horisberger, Stv. Direktor, Bundesamt für Kommunikation (Vorsitz)
• Pascal Krähenbühl, Dipl. El. Ing. FH, Sektionschef, Bundesamt für Kommunikation
• Sven Kühn, Dr. sc. ETHZ, Project Leader, IT'IS Foundation
• Harry Künzle, dipl. El. Ing. FH, Leiter Dienststelle Umwelt und Energie, Stadt St. Gallen, Delegierter SSV (Stv. Andreas Küng)
• Hugo Lehmann, Dr. rer. nat., Leiter Kompetenzzentrum Elektromagnetische Felder, Swisscom (Schweiz) AG
• Guillaume Moukouri, Salt Mobile SA
• Andreas Müller, Dipl. El.-Ing. FH, Head of Network Environment, Swisscom (Schweiz) AG
• Manfred Portmann, AfU, Kanton Freiburg, Delegierter KVU
Untergruppe 2: Datenvolumen und Exposition

Mandat
Zusammenhang zwischen Datenvolumen, Strahlung und Exposition:
- Für verschiedene Netzstrukturen/Netztopologien soll jeweils aufgezeigt werden:
 - die Exposition der Bevölkerung durch NIS von Basisstationen und
 - die Exposition der Nutzenden durch ihre Endgeräte
- NIS-Monitoring

Mitglieder
- Joseph Al Ahmar, Dipl.-Ing. der Mechatronik, Wissenschaftlicher Mitarbeiter, Bundesamt für Umwelt
- Peter Fritschi, El. Ing. HTL/MBA, Engineer II, Swisscom (Schweiz) AG
- Jürg Fröhlich, Dr. sc. techn., Head of Business and Project Management, Fields at Work GmbH
- Roland Hinn, Dipl.-Ing. Mag. rer. soc. oec., Senior Engineer Infrastructure Quality, Sunrise Communications AG
- Sven Kühn, Dr. sc. (ETHZ), Project Leader, IT’IS Foundation
- Niels Kuster, Prof. Dr., Geschäftsführer, IT’IS Foundation
- Hugo Lehmann, Dr. rer. nat., Leiter Kompetenzzentrum Elektromagnetische Felder, Swisscom (Schweiz) AG
- Erwin Mülhauser, dipl. El.-Ing. HTL, Experte EMV/EMVU/NIS, Bundesamt für Kommunikation BAKOM (Stv. André Trabold)
- Andreas Müller, Dipl. El.-Ing. FH, Head of Network Environment, Swisscom (Schweiz) AG
- Alexander Reichenbach, Dipl. Umwelt-Natw. ETH, Sektionschef, Bundesamt für Umwelt (Vorsitz)
- Andreas Siegenthaler, Dr. phil. nat., Wissenschaftlicher Mitarbeiter, Bundesamt für Umwelt
- Evelyn Stempfel, Dr. phil. nat., Sektionschefin, Bundesamt für Gesundheit
- Nadia Vogel, Dr. sc. nat. ETH, AWEL Kanton Zürich
Untergruppe 3: Gesundheitliche Auswirkungen

Mandat

Aktueller Stand der wissenschaftlichen Forschung, insbesondere neue Erkenntnisse seit Bericht 2015:

- Reale Exposition und Belastung der Bevölkerung durch Basisstationen und Endgeräte
 - Momentan
 - Wenn möglich Prognose, insbesondere für 5G
- Stand der Forschung zu den Wirkungen von hochfrequenter Strahlung auf Menschen
 - Zusammenfassung des für den «Bericht Noser» etablierten Stands der Wissenschaft
 - Ergänzung durch die seit 2015 neu publizierten Studien

Mitglieder

- Stefan Dongus, Dr. phil. nat., Environmental Exposures & Health Unit, Swiss TPH
- Gregor Dürrenberger, Dr. sc. nat., Geschäftsführer, Forschungsstiftung Strom und Mobilkommunikation FSM
- Markus N. Durrer, Elektro- und VDI Hygiene A Ingenieur, Freiberuflicher Experte IBH, Technischer Berater der AefU
- Jürg Fröhlich, Dr. sc. techn., Head of Business and Project Management, Fields at Work GmbH
- Yvonne Gilli, Dr. med., Verbindung der Schweizer Ärztinnen und Ärzte FMH
- Michael Hässig, Prof. Dr. med. vet., Universität Zürich (im Mandat der AefU)
- Hugo Lehmann, Dr. rer. nat., Leiter Kompetenzzentrum Elektromagnetische Felder, Swisscom (Schweiz) AG
- Manuel Murbach, Dr. sc. ETHZ, Projektleiter, ITIS Foundation
- Carlos Quinto, Dr. med., Verbindung der Schweizer Ärztinnen und Ärzte FMH
- Alexander Reichenbach, Dipl. Umwelt-Natw. ETH, Sektionschef, Bundesamt für Umwelt
- Martin Röösli, Prof. Dr. phil. nat., Professor für Umweltepidemiologie Swiss TPH, Leiter Beratende Experten- gruppe NIS (Vorsitz)
- Edith Steiner, Dr. med., Ärztinnen und Ärzte für Umweltschutz AefU
- Evelyn Stempfel, Dr. phil. nat., Sektionschefin, Bundesamt für Gesundheit
- André Trabold, Dipl. El. Ing. HTL, Leiter Gruppe NIS, Bundesamt für Kommunikation

Kerngruppe

Mandat

Die Kerngruppe hat die Aufgabe, die Inhalte der Berichterstattung an das UVEK für die Arbeitsgruppe Mobilfunk und Strahlung vorzubereiten. Die Arbeitsgruppe soll an den bereits festgelegten Sitzungen über diese vorbereiteten Berichtsteile diskutieren können. Der Zeitplan der Kerngruppe richtet sich danach. Die Arbeit der Kerngruppe umfasst insbesondere folgende Aufgaben:

a) Auflisten und Bewerten von möglichen Massnahmen

- Zusammentragen und Auflisten aller denkbaren und möglichen Massnahmen, mit denen die Kapazitäten für die Übertragung von 5G-Daten in der Schweiz beeinflusst werden können.
Die Kerngruppe stellt sicher, dass insbesondere diejenigen Massnahmen aufgelistet und geprüft werden, zu denen sich in den Berichten der drei Untergruppen Informationen finden und/oder zu denen in den parlamentarischen Vorstösse Auskünfte verlangt werden.

Bewertung der einzelnen Massnahmen in Bezug auf verschiedene Aspekte. Namentlich müssen Kosten und Zeitbedarf bei den Betreibern, Veränderung der Exposition der Bevölkerung, administrativer Aufwand für Behörden und Netzbetreiber und die Wirkung für die Steigerung der Kapazität eines Mobilfunknetzes untersucht werden.

b) Optionen aus den bewerteten Massnahmen

Aus den bewerteten Massnahmen entwickelt die Kerngruppe Optionen, mit denen die Herausforderungen in Bezug auf 5G aus ihrer Sicht angegangen werden könnten. Die Optionen sind einzelne Massnahmen oder Massnahmenpakete.

c) Empfehlungen aus den Optionen

Die Kerngruppe entwickelt aus den Optionen eine oder mehrere Empfehlungen zuhanden der Arbeitsgruppe Mobilfunk und Strahlung.

Mitglieder

- Valentin Delb, Abteilungsleiter, AWEL Kanton Zürich, Delegierter KVU
- Yvonne Gilli, Dr. med., Verbindung der Schweizer Ärztinnen und Ärzte FMH
- Christian Grasser, Geschäftsführer, Schweizerischer Verband der Telekommunikation asut
- Philippe Horisberger, Stv. Direktor, Bundesamt für Kommunikation
- Harry Künzle, dipl. El. Ing. FH, Leiter Dienststelle Umwelt und Energie, Stadt St. Gallen, Delegierter SSV
- Alexander Reichenbach, Dipl. Umwelt-Natw. ETH, Sektionschef, Bundesamt für Umwelt
- Martin Röösi, Prof. Dr., Professor für Umweltepidemiologie Swiss TPH, Leiter Beratende Expertengruppe NIS
- Paul Steffen, Dr. sc. nat., Vizedirektor, Bundesamt für Umwelt (Vorsitz)
- Urs Walker, Fürsprecher, Abteilungschef, Bundesamt für Umwelt
Anhang 4: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>Third Generation Partnership Project</td>
</tr>
<tr>
<td>5G</td>
<td>New Radio (5. Mobilfunkgeneration)</td>
</tr>
<tr>
<td>AGW</td>
<td>Anlagegrenzwert (Anhang 1 NISV)</td>
</tr>
<tr>
<td>Anses</td>
<td>Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Nationale Agentur für Lebensmittelsicherheit, Umweltschutz und Arbeitsschutz, Frankreich)</td>
</tr>
<tr>
<td>ARPANSA</td>
<td>Australian Radiation Protection and Nuclear Safety Agency, die australische Behörde für Strahlenschutz und nukleare Sicherheit</td>
</tr>
<tr>
<td>ASUT</td>
<td>Association Suisse des Télécommunications, Schweizerischer Verband der Telekommunikation</td>
</tr>
<tr>
<td>BAFU</td>
<td>Bundesamt für Umwelt</td>
</tr>
<tr>
<td>BAG</td>
<td>Bundesamt für Gesundheit</td>
</tr>
<tr>
<td>BAKOM</td>
<td>Bundesamt für Kommunikation</td>
</tr>
<tr>
<td>BAV</td>
<td>Bundesamt für Verkehr</td>
</tr>
<tr>
<td>BLN</td>
<td>Bundesinventar der Landschaften und Naturdenkmäler</td>
</tr>
<tr>
<td>BORS</td>
<td>Behörden und Organisationen für Rettung und Sicherheit</td>
</tr>
<tr>
<td>BPUK</td>
<td>Schweizerische Bau-, Planungs- und Umweltdirektorenkonferenz</td>
</tr>
<tr>
<td>BERENIS</td>
<td>Beratende Expertengruppe Nichtionisierende Strahlung</td>
</tr>
<tr>
<td>BUWAL</td>
<td>Bundesamt für Umwelt, Wald und Landschaft, heute BAFU</td>
</tr>
<tr>
<td>Capex</td>
<td>capital expenditure, Investitionen</td>
</tr>
<tr>
<td>Cercl'Air</td>
<td>Vereinigung der schweizerischen Behörden- und Hochschulvertreter im Bereich der Luftreinhaltung und der nichtionisierenden Strahlung</td>
</tr>
<tr>
<td>ComCom</td>
<td>Eidgenössische Kommunikationskommission</td>
</tr>
<tr>
<td>D2D</td>
<td>Device-to-Device-Kommunikation, direkte Kommunikation zwischen zwei Geräten</td>
</tr>
<tr>
<td>DAB</td>
<td>Digital Audio Broadcasting, digitaler Rundfunk</td>
</tr>
<tr>
<td>DVB-T</td>
<td>Digital Video Broadcasting-Terrestrial, Digitale Übertragung von TV-Signalen. Das T steht für die Ausstrahlung über terrestrische Sendeanlagen.</td>
</tr>
<tr>
<td>EFHRAN</td>
<td>European Health Risk Assessment Network on EMF</td>
</tr>
<tr>
<td>EHS</td>
<td>Elektrohypersensibilität</td>
</tr>
<tr>
<td>EMF</td>
<td>Elektromagnetische Felder</td>
</tr>
<tr>
<td>FRMCS</td>
<td>Future Railway Mobile Communication System, das zukünftige Bahnmobilkommunikationssystem</td>
</tr>
<tr>
<td>ERP</td>
<td>Effective radiated power oder equivalent radiated power, effektive oder äquivalente Strahlungsleistung (in Watt)</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute, Europäisches Institut für Telekommunikationsnormen</td>
</tr>
<tr>
<td>FTTH</td>
<td>Fiber to the home, Fernmeldenetz, das bis in jedes Geschäft-, Mehr- oder Einfamilienhaus über Glasfaser (Lichtwellenleiter) geführt wird</td>
</tr>
<tr>
<td>FMG</td>
<td>Fernmeldegesetz vom 30.04.1997 (SR 784.10)</td>
</tr>
<tr>
<td>FSM</td>
<td>Forschungstiftung Strom und Mobilkommunikation</td>
</tr>
<tr>
<td>ETHZ</td>
<td>Eidgenössische Technische Hochschule Zürich</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications (2. Mobilfunkgeneration, 2G)</td>
</tr>
<tr>
<td>GSM-R</td>
<td>auch GSM-R, von der SBB betriebenes Mobilfunknetz, welches für den Bahnbetrieb eingesetzt wird (z. B. Führerstand-Signalisierung)</td>
</tr>
<tr>
<td>HF-NIS</td>
<td>Hochfrequente nichtionisierende Strahlung</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer, Internationale Agentur für Krebsforschung</td>
</tr>
<tr>
<td>ICNIRP</td>
<td>International Commission on Non-Ionizing Radiation Protection, Internationale Kommission für Strahlenschutz</td>
</tr>
<tr>
<td>IGW</td>
<td>Immissionsgrenzwert (Anhang 2 NISV)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher/Bayerischer Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>IMT-2020</td>
<td>International Mobile Telecommunications-2020, von der ITU definierte Anforderungen für den 5G-Standard</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things, Internet der Dinge</td>
</tr>
<tr>
<td>ISOS</td>
<td>Bundesinventar der schützenswerten Ortsbilder der Schweiz von nationaler Bedeutung</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union, Internationale Fernmeldeunion</td>
</tr>
<tr>
<td>KFV</td>
<td>Kommission für Verkehr und Fernmeldewesen</td>
</tr>
<tr>
<td>KVU</td>
<td>Konferenz der Vorsteher der Umweltschutzämter der Schweiz</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution (4. Mobilfunkgeneration, 4G)</td>
</tr>
<tr>
<td>M2M</td>
<td>Machine-to-Machine-Anwendungen, automatischer Informationsaustausch zwischen Geräten</td>
</tr>
<tr>
<td>METAS</td>
<td>Eidgenössisches Institut für Metrologie</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input Multiple Output, Übertragungs-System für die Nutzung mehrerer Sendee- und Empfangsantennen zur drahtlosen Kommunikation</td>
</tr>
<tr>
<td>MMW</td>
<td>Millimeterwellen</td>
</tr>
<tr>
<td>MORAN</td>
<td>Multi Operator Radio Access Network, Netzwerk- Sharing mehrerer Betreiber</td>
</tr>
<tr>
<td>mW</td>
<td>Milliwatt (Masseinheit für Leistung)</td>
</tr>
<tr>
<td>NaFZ</td>
<td>Nationaler Frequenzzuweisungsplan</td>
</tr>
<tr>
<td>NFP</td>
<td>Nationales Forschungsprogramm</td>
</tr>
<tr>
<td>NICER</td>
<td>Nationales Krebsregister</td>
</tr>
<tr>
<td>NIS</td>
<td>Nichtionisierende Strahlung</td>
</tr>
<tr>
<td>NISSG</td>
<td>Bundesgesetz vom 16.06.2017 über den Schutz vor Gefährdungen durch nichtionisierende Strahlung und Schall (SR 814.71)</td>
</tr>
<tr>
<td>NISV</td>
<td>Verordnung vom 23.12.1999 über den Schutz vor nichtionisierender Strahlung (SR 814.710)</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonales Frequenzmultiplexverfahren</td>
</tr>
<tr>
<td>OMEN</td>
<td>Orte mit empfindlicher Nutzung (Art. 3 Abs. 3 NISV)</td>
</tr>
<tr>
<td>Opex</td>
<td>operational expenditure, Betriebskosten</td>
</tr>
<tr>
<td>PPP</td>
<td>Public-Private-Partnership, partnerschaftliche Zusammenarbeit zwischen der öffentlichen Hand und Privaten</td>
</tr>
<tr>
<td>PWLAN</td>
<td>Public WLAN, öffentliches drahtloses lokales Netzwerk</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species, reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>SAR</td>
<td>Spezifische Absorptionsrate</td>
</tr>
<tr>
<td>SCENIHR</td>
<td>Scientific Committee on Emerging and Newly Identified Health Risks</td>
</tr>
<tr>
<td>SSM</td>
<td>Strahlensicherheitsmyndigheten, die schwedische Strahlensicherheitsbehörde</td>
</tr>
<tr>
<td>SSV</td>
<td>Schweizerischer Städteverband</td>
</tr>
<tr>
<td>TAB</td>
<td>Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System (3. Mobilfunkgeneration, 3G)</td>
</tr>
<tr>
<td>USG</td>
<td>Umweltschutzgesetz vom 07.10.1983 (SR 814.03)</td>
</tr>
<tr>
<td>UVEK</td>
<td>Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation</td>
</tr>
<tr>
<td>V/m</td>
<td>Volt pro Meter, Mass für die elektrische Feldstärke</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization, Weltgesundheitsorganisation</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network, drahtloses lokales Netzwerk</td>
</tr>
<tr>
<td>WLL</td>
<td>Wireless Local Loop, drahtloser Teilnehmeranschluss</td>
</tr>
</tbody>
</table>
Anhang 5: Quellennachweise und Erläuterungen

d.pdf

3 https://www.digitaldialog.swiss/de

4 https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-61417.html

7 https://www.bafu.admin.ch/bafu/de/home/themen/elektrosmog/dossiers/5g-netze.html

8 Fernmeldegesetz vom 30.04.1997 (FMG), SR 784.10

10 https://www.parlament.ch/de/ratsbetrieb/suche-curia-vista/geschaeft?AffairId=20170058

11 Strategie «Digitale Schweiz», September 2018 (BAKOM)

12 Umweltschutzgesetz vom 07.10.1983 (USG), SR 814.01

13 Verordnung vom 23. Dezember 1999 über den Schutz vor nichtionisierender Strahlung (NISV), SR 814.710

14 ICNIRP Guidelines, 1998

16 Leitfaden Mobilfunk für Gemeinden und Städte, BAFU / BAKOM / ARE 2010, Kapitel 3.3–3.5

17 Mobilfunk-Empfehlungen der BPUK vom 7. März 2013

18 http://www.3gpp.org/release-15

19 Anforderungen an 5G können nicht als Ganzes einer Applikation zur Verfügung gestellt werden, sondern eine Optimierung in die eine Richtung geht immer zu Lasten der Performance in die andere Richtung.

20 Kann mit den heute zur Verfügung stehenden Frequenzen unter 6 GHz nicht erreicht werden.

21 https://asut.ch/asut/de/page/publications.xhtml#studien

22 Es wird unterschieden zwischen Low-Bands (<1 GHz) und Mid-Bands (1–6 GHz) einerseits sowie High-Bands (mm-Wellen, >24 GHz) andererseits.

23 https://5gobservatory.eu

24 MIMO: Multiple Input Multiple Output (Quelle: EMF-Portal)

25 Quelle: EMF-Portal

27 Vergleiche Table 15, Case studies supporting IEC 62232 – Determination of RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure, IEC TR 62669 ED2 2018.

28 Bundesamt für Kommunikation BAKOM, Dienste auf Mobilfunknetzen (vom 4. Februar 2019)

29 Ericsson Mobility Report, November 2018

http://www.microwavejournal.com/articles/29428

31 Die Zuteilung der Frequenzspektrum-Anteile für FRMCS befindet sich zurzeit auf europäischer Ebene in der Harmo-
nisierungsphase.

32 https://map.geo.admin.ch und http://www.qeostat.admin.ch; Datei für die Einwohner: STATPOP2017G.csv; Datei
für die Arbeitsstätten: STATENT2016_N08_Va180828G.csv; Datei für die Gebäude: GWS2017G.csv

33 Der Wert von 80 MHz wurde deshalb gewählt, weil einer der drei Betreiber bei der Auktion nur 80 MHz erworben hat.

to Serve Enhanced Mobile Broadband and Internet of Things Applications; IEEE vechicular technology magazine,
Dezember 2018.

35 Schumacher A., Merz R. und Burg A.: 3.5 GHz Coverage Assessment with a 5G Testbed, accepted for publication in
VTC 2019-Spring in Kuala Lumpur, Malaysia.

36 «Konzept für ein nationales Monitoring elektromagnetischer Felder», Bericht des Bundesrates in Erfüllung des Post-

37 Aus Kapitel 2.3, «Konzept für ein nationales Monitoring elektromagnetischer Felder», Bericht des Bundesrates in Erfüll-

Feldern bei einer Bevölkerungsstichprobe im Kanton Zürich 2016. http://www.awel.zh.ch/content/dam/baudirek-
tion/awelluft_asbest_elektromog/elektromog/dokumente/PersMeas_AWEL_2016.pdf; Röösl M., Lagorio S., Schoe-

wirkt die Nutzung und die Strahlung von Mobiltelefonen auf Jugendliche? Primary and Hospital Care – Allgemeine In-
Does 5G pose a danger to it or not? Environmental Research 163: 208–216; Eeftens M., Struchen B., Birks L.E. et al.
121(Pt 1): 216–226; Sagat S., Dongus S., Schoeni A. et al. (2018b): Radiofrequency electromagnetic field exposure in

(2010): The association between exposure determined by radiofrequency personal exposimeters and human exposure:
uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 32(8):
652–663; Choi J., Hwang I.H., Lim H. et al. (2018): Assessment of radiofrequency electromagnetic field exposure from
personal measurements considering the body shadowing effect in Korean children and parents. Science of the Total
Environment 627: 1544–1551.

Siehe etwa:

Immisionsen von kleinzellen und grosszellen Basisstationsnetzen, FSM – Forschungsstiftung Strom und Mobilkommunikation, Mai 2018 / update

Rapport techniques sur les déploiements pilotes de petites antennes en France (pour favoriser l’accès au très haut débit mobile), ANFR, 2018

Informationsblatt 5G «Zukunft des Mobilfunks: Auswirkung auf Behörden» des Cerc’Air, Stand Juni 2018
Arbeitsgruppe Mobilfunk und Strahlung

76 ETSI TS 136 213 V15.6.0 (2019-07): LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 15.6.0 Release 15)

77 Cisco Internet Business Systems Group (2012), Stuart Taylor and Andy Young, The New World of SP Wi-Fi: Cisco IBSG Research Uncovers What U.S. Consumers Want from Wi-Fi and Mobile.

78 Vgl. hierzu z. B. Referat Prof. J. Leuthold, ETH Zürich, am Science Brunch vom 6.12.2018

89 Der Bericht ist noch nicht veröffentlicht.

93 Unter Nocebo-Effekt versteht man die krankmachende Wirkung einer Exposition aufgrund der Erwartungshaltung des Betroffenen, also das Gegenstück zum Placebo-Effekt.

95 Eidgenössische Kommission für Denkmalpflege EKD, Grundsatzdokument vom 22. Juni 2018

96 Die entsprechenden Gebiete sind unter https://www.geo.admin.ch ersichtlich.

97 Mobilfunkempfehlungen der BPUK vom 7. März 2013

100 Medienmitteilung der BPUK vom 23. September 2019

101 Medienmitteilung vom 20. September 2018

103 https://www.parlament.ch/de/ratsbetrieb/suche-curia-vista/geschaeft?AffairId=20093488

104 https://www.bafu.admin.ch/bafu/de/home/themen/elektrosmog/mitteilungen.msg-id-60064.html

108 Dr. med. E. Steiner in Oekoskop 3/18, S. 7 ff.